skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A highly efficient metal-free protocol for the synthesis of linear polydicyclopentadiene
We have developed a highly efficient synthesis of linear polydicyclopentadiene (pDCPD)viaphotoredox mediated metal-free ring-opening metathesis polymerization (MF-ROMP) and investigated theTg–Mndependence of linear pDCPD.  more » « less
Award ID(s):
2002886
PAR ID:
10472666
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Polymer Chemistry
Date Published:
Journal Name:
Polymer Chemistry
Volume:
12
Issue:
19
ISSN:
1759-9954
Page Range / eLocation ID:
2860 to 2867
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Theθ-temperature of linear, ring, and poly[n]catenane polymers as characterized by varying LJ cutoff,rcvalues. Higherrcvalues correspond to lowerθ-temperature. 
    more » « less
  2. From left to right and top to bottom, the five Ge2H2+structures are shown:trans, monobridged, butterfly, germylidene, and linear. 
    more » « less
  3. Abstract Discovery of new materials with enhanced optical properties in the visible and UV‐C range can impact applications in lasers, nonlinear optics, and quantum optics. Here, the optical floating zone growth of a family of rare earth borates,RBa3(B3O6)3(R= Nd, Sm, Tb, Dy, and Er), with promising linear and nonlinear optical (NLO) properties is reported. Although previously identified to be centrosymmetric, the X‐ray analysis combined with optical second harmonic generation (SHG) assigns the noncentrosymmetricPspace group to these crystals. Characterization of linear optical properties reveals a direct bandgap of ≈5.61–5.72 eV and strong photoluminescence in both the visible and mid‐IR regions. Anisotropic linear and nonlinear optical characterization reveals both Type‐I and Type‐II SHG phase matchability, with the highest effective phase‐matched SHG coefficient of 1.2 pm V−1at 800‐nm fundamental wavelength (for DyBa3(B3O6)3), comparable to β‐BaB2O4(phase‐matchedd22≈ 1.9 pm V−1). Laser‐induced surface damage threshold for these environmentally stable crystals is 650–900 GW cm−2, which is four to five times higher than that of β‐BaB2O4, thus providing an opportunity to pump with significantly higher power to generate about six to seven times stronger SHG light. Since the SHG arises from disorder on the Ba‐site, significantly larger SHG coefficients may be realized by “poling” the crystals to align the Ba displacements. These properties motivate further development of this crystal family for laser and wide bandgap NLO applications. 
    more » « less
  4. We report highkp(macro)monomer structures for use in grafting-through ring-opening metathesis polymerization to make linear and bottlebrush polymers. 
    more » « less
  5. Abstract We study tidal dissipation in hot Jupiter host stars due to the nonlinear damping of tidally driveng-modes, extending the calculations of Essick & Weinberg to a wide variety of stellar host types. This process causes the planet’s orbit to decay and has potentially important consequences for the evolution and fate of hot Jupiters. Previous studies either only accounted for linear dissipation processes or assumed that the resonantly excited primary mode becomes strongly nonlinear and breaks as it approaches the stellar center. However, the great majority of hot Jupiter systems are in the weakly nonlinear regime in which the primary mode does not break but instead excites a sea of secondary modes via three-mode interactions. We simulate these nonlinear interactions and calculate the net mode dissipation for stars that range in mass from 0.5M≤M≤ 2.0Mand in age from the early main sequence to the subgiant phase. We find that the nonlinearly excited secondary modes can enhance the tidal dissipation by orders of magnitude compared to linear dissipation processes. For the stars withM≲ 1.0Mof nearly any age, we find that the orbital decay time is ≲100 Myr for orbital periodsPorb≲ 1 day. ForM≳ 1.2M, the orbital decay time only becomes short on the subgiant branch, where it can be ≲10 Myr forPorb≲ 2 days and result in significant transit time shifts. We discuss these results in the context of known hot Jupiter systems and examine the prospects for detecting their orbital decay with transit timing measurements. 
    more » « less