Abstract Computational studies revealed that dirhodium tetrakis(1,2,2‐triarylcyclopropanecarboxylate) (Rh2(TPCP)4) catalysts adopt distinctive high symmetry orientations, which are dependent on the nature of the aryl substitution pattern. The parent catalyst, Rh2(TPCP)4, and those with ap‐substituent at the C1 aryl, such as Rh2(p‐BrTPCP)4and Rh2(p‐PhTPCP)4, adopt aC2‐symmetric structure. Rh2(3,5‐di(p‐tBuC6H4)TPCP)4, 3,5‐disubstituted at the C1 aryl, adopts aD2‐symmetric structure, whereas catalysts with ano‐substituent at the C1 aryl, such as Rh2(o‐Cl‐5‐BrTPCP)4,adopt aC4‐symmetric structure.
more »
« less
Ring-opening metathesis polymerization of norbornene–benzoladderene (macro)monomers
We report highkp(macro)monomer structures for use in grafting-through ring-opening metathesis polymerization to make linear and bottlebrush polymers.
more »
« less
- PAR ID:
- 10505398
- Publisher / Repository:
- Royal Society of Chemistry
- Date Published:
- Journal Name:
- Polymer Chemistry
- Volume:
- 14
- Issue:
- 41
- ISSN:
- 1759-9954
- Page Range / eLocation ID:
- 4726 to 4735
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary Leaf dark respiration (Rd) acclimates to environmental changes. However, the magnitude, controls and time scales of acclimation remain unclear and are inconsistently treated in ecosystem models.We hypothesized thatRdand Rubisco carboxylation capacity (Vcmax) at 25°C (Rd,25,Vcmax,25) are coordinated so thatRd,25variations supportVcmax,25at a level allowing full light use, withVcmax,25reflecting daytime conditions (for photosynthesis), andRd,25/Vcmax,25reflecting night‐time conditions (for starch degradation and sucrose export). We tested this hypothesis temporally using a 5‐yr warming experiment, and spatially using an extensive field‐measurement data set. We compared the results to three published alternatives:Rd,25declines linearly with daily average prior temperature;Rdat average prior night temperatures tends towards a constant value; andRd,25/Vcmax,25is constant.Our hypothesis accounted for more variation in observedRd,25over time (R2 = 0.74) and space (R2 = 0.68) than the alternatives. Night‐time temperature dominated the seasonal time‐course ofRd, with an apparent response time scale ofc.2 wk.Vcmaxdominated the spatial patterns.Our acclimation hypothesis results in a smaller increase in globalRdin response to rising CO2and warming than is projected by the two of three alternative hypotheses, and by current models.more » « less
-
Context. Carbon monoxide (CO) is a poor tracer of H2in the diffuse interstellar medium (ISM), where most of the carbon is not incorporated into CO molecules, unlike the situation at higher extinctions. Aims. We present a novel, indirect method for constraining H2column densities (NH2) without employing CO observations. We show that previously recognized nonlinearities in the relation between the extinction,AV(H2), derived from dust emission and the H Icolumn density (NH I) are due to the presence of molecular gas. Methods. We employed archival (NH2) data, obtained from the UV spectra of stars, and calculatedAV(H2) toward these sight lines using 3D extinction maps. The following relation fits the data: logNH2= 1.38742 (logAV(H2))3− 0.05359 (logAV(H2))2+ 0.25722 logAV(H2) + 20.67191. This relation is useful for constrainingNH2in the diffuse ISM as it requires onlyNH Iand dust extinction data, which are both easily accessible. In 95% of the cases, the estimates produced by the fitted equation have deviations of less than a factor of 3.5. We constructed aNH2map of our Galaxy and compared it to the CO integrated intensity (WCO) distribution. Results. We find that the average ratio (XCO) betweenNH2andWCOis approximately equal to 2 × 1020cm−2(K km s−1)−1, consistent with previous estimates. However, we find that theXCOfactor varies by orders of magnitude on arcminute scales between the outer and the central portions of molecular clouds. For regions withNH2≳ 1020cm−2, we estimate that the average H2fractional abundance,fH2= 2NH2/(2NH2+NH I), is 0.25. Multiple (distinct) largely atomic clouds are likely found along high-extinction sightlines (AV≥ 1 mag), hence limitingfH2in these directions. Conclusions. More than 50% of the lines of sight withNH2≥ 1020cm−2are untraceable by CO with aJ= 1−0 sensitivity limitWCO= 1 K km s−1.more » « less
-
PREMISEBiological invasions increasingly threaten native biodiversity and ecosystem services. One notable example is the common reed,Phragmites australis, which aggressively invades North American salt marshes. Elevated atmospheric CO2and nitrogen pollution enhance its growth and facilitate invasion becauseP. australisresponds more strongly to these enrichments than do native species. We investigated how modifications to stomatal features contribute to strong photosynthetic responses to CO2and nitrogen enrichment inP. australisby evaluating stomatal shifts under experimental conditions and relating them to maximal stomatal conductance (gwmax) and photosynthetic rates. METHODSPlants were grownin situin open‐top chambers under ambient and elevated atmospheric CO2(eCO2) and porewater nitrogen (Nenr) in a Chesapeake Bay tidal marsh. We measured light‐saturated carbon assimilation rates (Asat) and stomatal characteristics, from which we calculatedgwmaxand determined whether CO2and Nenraltered the relationship betweengwmaxandAsat. RESULTSeCO2and Nenrenhanced bothgwmaxandAsat, but to differing degrees;gwmaxwas more strongly influenced by Nenrthrough increases in stomatal density whileAsatwas more strongly stimulated by eCO2. There was a positive relationship betweengwmaxandAsatthat was not modified by eCO2or Nenr, individually or in combination. CONCLUSIONSChanges in stomatal features co‐occur with previously described responses ofP. australisto eCO2and Nenr. Complementary responses of stomatal length and density to these global change factors may facilitate greater stomatal conductance and carbon gain, contributing to the invasiveness of the introduced lineage.more » « less
-
Abstract PremisePrevious studies have suggested a trade‐off between trichome density (Dt) and stomatal density (Ds) due to shared cell precursors. We clarified how, when, and why this developmental trade‐off may be overcome across species. MethodsWe derived equations to determine the developmental basis forDtandDsin trichome and stomatal indices (itandis) and the sizes of epidermal pavement cells (e), trichome bases (t), and stomata (s) and quantified the importance of these determinants ofDtandDsfor 78 California species. We compiled 17 previous studies ofDt–Dsrelationships to determine the commonness ofDt–Dsassociations. We modeled the consequences of differentDt–Dsassociations for plant carbon balance. ResultsOur analyses showed that higherDtwas determined by higheritand lowere, and higherDsby higherisand lowere. Across California species, positiveDt–Dscoordination arose due toit–iscoordination and impacts of the variation ine. ADt–Dstrade‐off was found in only 30% of studies. Heuristic modeling showed that species sets would have the highest carbon balance with a positive or negative relationship or decoupling ofDtandDs, depending on environmental conditions. ConclusionsShared precursor cells of trichomes and stomata do not limit higher numbers of both cell types or drive a generalDt–Dstrade‐off across species. This developmental flexibility across diverse species enables differentDt–Dsassociations according to environmental pressures. Developmental trait analysis can clarify how contrasting trait associations would arise within and across species.more » « less