skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optimizing cloud motion estimation on the edge with phase correlation and optical flow
Abstract. Phase correlation (PC) is a well-known method for estimating cloud motion vectors (CMVs) from infrared and visible spectrum images. Commonly, phase shift is computed in the small blocks of the images using the fast Fourier transform. In this study, we investigate the performance and the stability of the blockwise PC method by changing the block size, the frame interval, and combinations of red, green, and blue (RGB) channels from the total sky imager (TSI) at the United States Atmospheric Radiation Measurement user facility's Southern Great Plains site. We find that shorter frame intervals, followed by larger block sizes, are responsible for stable estimates of the CMV, as suggested by the higher autocorrelations. The choice of RGB channels has a limited effect on the quality of CMVs, and the red and the grayscale images are marginally more reliable than the other combinations during rapidly evolving low-level clouds. The stability of CMVs was tested at different image resolutions with an implementation of the optimized algorithm on the Sage cyberinfrastructure test bed. We find that doubling the frame rate outperforms quadrupling the image resolution in achieving CMV stability. The correlations of CMVs with the wind data are significant in the range of 0.38–0.59 with a 95 % confidence interval, despite the uncertainties and limitations of both datasets. A comparison of the PC method with constructed data and the optical flow method suggests that the post-processing of the vector field has a significant effect on the quality of the CMV. The raindrop-contaminated images can be identified by the rotation of the TSI mirror in the motion field. The results of this study are critical to optimizing algorithms for edge-computing sensor systems.  more » « less
Award ID(s):
1935984
PAR ID:
10472769
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
European Geosciences Union
Date Published:
Journal Name:
Atmospheric Measurement Techniques
Volume:
16
Issue:
5
ISSN:
1867-8548
Page Range / eLocation ID:
1195 to 1209
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Deep learning (DL) convolutional neural networks (CNNs) have been rapidly adapted in very high spatial resolution (VHSR) satellite image analysis. DLCNN-based computer visions (CV) applications primarily aim for everyday object detection from standard red, green, blue (RGB) imagery, while earth science remote sensing applications focus on geo object detection and classification from multispectral (MS) imagery. MS imagery includes RGB and narrow spectral channels from near- and/or middle-infrared regions of reflectance spectra. The central objective of this exploratory study is to understand to what degree MS band statistics govern DLCNN model predictions. We scaffold our analysis on a case study that uses Arctic tundra permafrost landform features called ice-wedge polygons (IWPs) as candidate geo objects. We choose Mask RCNN as the DLCNN architecture to detect IWPs from eight-band Worldview-02 VHSR satellite imagery. A systematic experiment was designed to understand the impact on choosing the optimal three-band combination in model prediction. We tasked five cohorts of three-band combinations coupled with statistical measures to gauge the spectral variability of input MS bands. The candidate scenes produced high model detection accuracies for the F1 score, ranging between 0.89 to 0.95, for two different band combinations (coastal blue, blue, green (1,2,3) and green, yellow, red (3,4,5)). The mapping workflow discerned the IWPs by exhibiting low random and systematic error in the order of 0.17–0.19 and 0.20–0.21, respectively, for band combinations (1,2,3). Results suggest that the prediction accuracy of the Mask-RCNN model is significantly influenced by the input MS bands. Overall, our findings accentuate the importance of considering the image statistics of input MS bands and careful selection of optimal bands for DLCNN predictions when DLCNN architectures are restricted to three spectral channels. 
    more » « less
  2. null (Ed.)
    As autonomous robots interact and navigate around real-world environments such as homes, it is useful to reliably identify and manipulate articulated objects, such as doors and cabinets. Many prior works in object articulation identification require manipulation of the object, either by the robot or a human. While recent works have addressed predicting articulation types from visual observations alone, they often assume prior knowledge of category-level kinematic motion models or sequence of observations where the articulated parts are moving according to their kinematic constraints. In this work, we propose FormNet, a neural network that identifies the articulation mechanisms between pairs of object parts from a single frame of an RGB-D image and segmentation masks. The network is trained on 100k synthetic images of 149 articulated objects from 6 categories. Synthetic images are rendered via a photorealistic simulator with domain randomization. Our proposed model predicts motion residual flows of object parts, and these flows are used to determine the articulation type and parameters. The network achieves an articulation type classification accuracy of 82.5% on novel object instances in trained categories. Experiments also show how this method enables generalization to novel categories and can be applied to real-world images without fine-tuning. 
    more » « less
  3. Bayer pattern is a widely used Color Filter Array (CFA) for digital image sensors, efficiently capturing different light wavelengths on different pixels without the need for a costly ISP pipeline. The resulting single-channel raw Bayer images offer benefits such as spectral wavelength sensitivity and low time latency. However, object detection based on Bayer images has been underexplored due to challenges in human observation and algorithm design caused by the discontinuous color channels in adjacent pixels. To address this issue, we propose the BayerDetect network, an end-to-end deep object detection framework that aims to achieve fast, accurate, and memory-efficient object detection. Unlike RGB color images, where each pixel encodes spectral context from adjacent pixels during ISP color interpolation, raw Bayer images lack spectral context. To enhance the spectral context, the BayerDetect network introduces a spectral frequency attention block, transforming the raw Bayer image pattern to the frequency domain. In object detection, clear object boundaries are essential for accurate bounding box predictions. To handle the challenges posed by alternating spectral channels and mitigate the influence of discontinuous boundaries, the BayerDetect network incorporates a spatial attention scheme that utilizes deformable convolutional kernels in multiple scales to explore spatial context effectively. The extracted convolutional features are then passed through a sparse set of proposal boxes for detection and classification. We conducted experiments on both public and self-collected raw Bayer images, and the results demonstrate the superb performance of the BayerDetect network in object detection tasks. 
    more » « less
  4. Bayer pattern is a widely used Color Filter Array (CFA) for digital image sensors, efficiently capturing different light wavelengths on different pixels without the need for a costly ISP pipeline. The resulting single-channel raw Bayer images offer benefits such as spectral wavelength sensitivity and low time latency. However, object detection based on Bayer images has been underexplored due to challenges in human observation and algorithm design caused by the discontinuous color channels in adjacent pixels. To address this issue, we propose the BayerDetect network, an end-to-end deep object detection framework that aims to achieve fast, accurate, and memory-efficient object detection. Unlike RGB color images, where each pixel encodes spectral context from adjacent pixels during ISP color interpolation, raw Bayer images lack spectral context. To enhance the spectral context, the BayerDetect network introduces a spectral frequency attention block, transforming the raw Bayer image pattern to the frequency domain. In object detection, clear object boundaries are essential for accurate bounding box predictions. To handle the challenges posed by alternating spectral channels and mitigate the influence of discontinuous boundaries, the BayerDetect network incorporates a spatial attention scheme that utilizes deformable convolutional kernels in multiple scales to explore spatial context effectively. The extracted convolutional features are then passed through a sparse set of proposal boxes for detection and classification. We conducted experiments on both public and self-collected raw Bayer images, and the results demonstrate the superb performance of the BayerDetect network in object detection tasks. 
    more » « less
  5. This paper presents a novel method for pedestrian detection and tracking by fusing camera and LiDAR sensor data. To deal with the challenges associated with the autonomous driving scenarios, an integrated tracking and detection framework is proposed. The detection phase is performed by converting LiDAR streams to computationally tractable depth images, and then, a deep neural network is developed to identify pedestrian candidates both in RGB and depth images. To provide accurate information, the detection phase is further enhanced by fusing multi-modal sensor information using the Kalman filter. The tracking phase is a combination of the Kalman filter prediction and an optical flow algorithm to track multiple pedestrians in a scene. We evaluate our framework on a real public driving dataset. Experimental results demonstrate that the proposed method achieves significant performance improvement over a baseline method that solely uses image-based pedestrian detection. 
    more » « less