The Cloud Radio Access Network (CRAN) architecture has been proposed as a way of addressing the network throughput and scalability challenges of large-scale LoRa networks. CRANs can improve network throughput by coherently combining signals, and scale to multiple channels by implementing the receivers in the cloud. However, in remote LoRa deployments, a CRAN’s demand for high-backhaul bandwidths can be challenging to meet. Therefore, bandwidth-aware compression of LoRa samples is needed to reap the benefits of CRANs. We introduce Cloud-LoRa, the first practical CRAN for LoRa, that can detect sub-noise LoRa signals and perform bandwidth-adaptive compression. To the best of our knowledge, this is the first demonstration of CRAN for LoRa operating in real-time. We deploy Cloud-LoRa in an agricultural field over multiple days with USRP as the gateway. A cellular backhaul hotspot is then used to stream the compressed samples to a Microsoft Azure server. We demonstrate SNR gains of over 6 dB using joint multi-gateway decoding and over 2x throughput improvement using state-of-the-art receivers, enabled by CRAN in real-world deployments.
more »
« less
Adapting LoRa Ground Stations for Low-latency Imaging and Inference from LoRa-enabled CubeSats
Recent years have seen the rapid deployment of low-cost CubeSats in low-Earth orbit, many of which experience significant latency (several hours) from the time information is gathered to the time it is communicated to the ground. This is primarily due to the limited availability of ground infrastructure that is bulky to deploy and expensive to rent. This article explores the opportunity in leveraging the extensive terrestrial LoRa infrastructure as a solution. However, the limited bandwidth and large amount of Doppler on CubeSats precludes these LoRa links to communicate rich satellite Earth images—instead, the CubeSats can at best send short messages. This article details our experience in designing LoRa-based satellite ground infrastructure that requires software-only modifications to receive packets from LoRa-enabled CubeSats recently launched by our team. We present Vista, a communication system that adapts encoding onboard the CubeSat and decoding configuration on commercial LoRa ground stations to allow images to be communicated. We perform a detailed evaluation of Vista by leveraging wireless channel measurements from a recent CubeSat (2021), and show that Vista can achieve 55.55% lower latency in retrieving data with 12.02 dB improvement in packet retrieval in the presence of terrestrial interference. We then evaluate Vista on a case study on land-use classification over images transmitted over the CubeSat link to further demonstrate a 4.56 dB improvement in image PSNR and 1.38× increase in classification accuracy over baseline approaches.
more »
« less
- Award ID(s):
- 2030154
- PAR ID:
- 10529690
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- ACM Transactions on Sensor Networks
- Volume:
- 20
- Issue:
- 5
- ISSN:
- 1550-4859
- Page Range / eLocation ID:
- 1 to 30
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Cloud Radio Access Network (CRAN) architecture has been proposed as a way of addressing the network throughput and scalability challenges of large-scale LoRa networks. CRANs can improve network throughput by coherently combining signals, and scale to multiple channels by implementing the receivers in the cloud. However, in remote LoRa deployments, a CRAN's demand for high-backhaul bandwidths can be challenging to meet. Therefore, bandwidth-aware compression of LoRa samples is needed to reap the benefits of CRANs. We introduce Cloud-LoRa, the first practical CRAN for LoRa, that can detect sub-noise LoRa signals and perform bandwidth-adaptive compression. To the best of our knowledge, this is the first demonstration of CRAN for LoRa operating in real-time. We deploy Cloud-LoRa in an agricultural field over multiple days with USRP as the gateway. A cellular backhaul hotspot is then used to stream the compressed samples to a Microsoft Azure server. We demonstrate SNR gains of over 6 dB using joint multi-gateway decoding and over 2x throughput improvement using state-of-the-art receivers, enabled by CRAN in real-world deployments.more » « less
-
Earth observation satellites, in low Earth orbits, are increasingly approaching near-continuous imaging of the Earth. Today, these satellites capture an image of every part of Earth every few hours. However, the networking capabilities haven’t caught up, and can introduce delays of few hours to days in getting these images to Earth. While this delay is acceptable for delay-tolerant applications like land cover maps, crop type identification, etc., it is unacceptable for latency-sensitive applications like forest fire detection or disaster monitoring. We design Serval to enable near-realtime insights from Earth imagery for latency-sensitive applications despite the networking bottlenecks by leveraging the emerging computational capabilities on the satellites and ground stations. The key challenge for our work stems from the limited computational capabilities and power resources available on a satellite. We solve this challenge by leveraging predictability in satellite orbits to bifurcate computation across satellites and ground stations. We evaluate Serval using trace-driven simulations and hardware emulations on a dataset comprising ten million images captured using the Planet Dove constellation comprising nearly 200 satellites. Serval reduces end-to-end latency for high priority queries from 71.71 hours (incurred by state of the art) to 2 minutes, and 90-th percentile from 149 hours to 47 minutes.more » « less
-
This article presents a novel system,LLDPC,1which brings Low-Density Parity-Check (LDPC) codes into Long Range (LoRa) networks to improve Forward Error Correction, a task currently managed by less efficient Hamming codes. Three challenges in achieving this are addressed: First, Chirp Spread Spectrum (CSS) modulation used by LoRa produces only hard demodulation outcomes, whereas LDPC decoding requires Log-Likelihood Ratios (LLR) for each bit. We solve this by developing a CSS-specific LLR extractor. Second, we improve LDPC decoding efficiency by using symbol-level information to fine-tune LLRs of error-prone bits. Finally, to minimize the decoding latency caused by the computationally heavy Soft Belief Propagation (SBP) algorithm typically used in LDPC decoding, we apply graph neural networks to accelerate the process. Our results show thatLLDPCextends default LoRa’s lifetime by 86.7% and reduces SBP algorithm decoding latency by 58.09×.more » « less
-
Fine-tuning large language models (LLMs) using low-rank adaptation (LoRA) has become a highly efficient approach for downstream tasks, particularly in scenarios with limited computational resources. However, applying LoRA techniques to quantized LLMs poses unique challenges due to the reduced representational precision of quantized weights. In this paper, we introduce CLoQ (Calibrated LoRA initialization for Quantized LLMs), a simplistic initialization strategy designed to overcome these challenges. Our approach focuses on minimizing the layer-wise discrepancy between the original LLM and its quantized counterpart with LoRA components during initialization. By leveraging a small calibration dataset, CLoQ quantizes a pre-trained LLM and determines the optimal LoRA components for each layer, ensuring a strong foundation for subsequent fine-tuning. A key contribution of this work is a novel theoretical result that enables the accurate and closed-form construction of these optimal LoRA components. We validate the efficacy of CLoQ across multiple tasks such as language generation, arithmetic reasoning, and commonsense reasoning, demonstrating that it consistently outperforms existing LoRA fine-tuning methods for quantized LLMs, especially at 2-bit.more » « less
An official website of the United States government

