skip to main content


Title: Spatial multiplexing for robust optical vortex transmission with optical nonlinearity

Optical vortex beams, with phase singularity characterized by a topological charge (TC), introduces a new dimension for optical communication, quantum information, and optical light manipulation. However, the evaluation of TCs after beam propagation remains a substantial challenge, impeding practical applications. Here, we introduce vortices in lateral arrays (VOILA), a novel spatial multiplexing approach that enables simultaneous transmission of a lateral array of multiple vortices. Leveraging advanced learning techniques, VOILA effectively decodes TCs, even in the presence of strong optical nonlinearities simulated experimentally. Notably, our approach achieves substantial improvements in single-shot bandwidth, surpassing single-vortex scheme by several orders of magnitude. Furthermore, our system exhibits precise fractional TC recognition in both linear and nonlinear regimes, providing possibilities for high-bandwidth communication. The capabilities of VOILA promise transformative contributions to optical information processing and structured light research, with significant potential for advancements in diverse fields.

 
more » « less
NSF-PAR ID:
10472907
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
31
Issue:
19
ISSN:
1094-4087; OPEXFF
Format(s):
Medium: X Size: Article No. 31610
Size(s):
["Article No. 31610"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Wavelength, polarization and orbital angular momentum of light are important degrees of freedom for processing and encoding information in optical communication. Over the years, the generation and conversion of orbital angular momentum in nonlinear optical media has found many novel applications in the context of optical communication and quantum information processing. With that hindsight, here orbital angular momentum conversion of optical vortices through second-harmonic generation from only one atomically thin WS2monolayer is demonstrated at room temperature. Moreover, it is shown that the valley-contrasting physics associated with the nonlinear optical selection rule in WS2monolayer precisely determines the output circular polarization state of the generated second-harmonic vortex. These results pave the way for building future miniaturized valleytronic devices with atomic-scale thickness for many applications such as chiral photon emission, nonlinear beam generation, optoelectronics, and quantum computing.

     
    more » « less
  2. Abstract

    This study investigates the contributions of incipient vortex circulation and midlevel moisture to tropical cyclone (TC) expansion within an idealized numerical modeling framework. We find that the incipient vortex circulation places the primary constraint on TC expansion. Increasing the midlevel moisture further promotes expansion but mostly expedites the intensification process. The expansion rate for initially large vortices exhibits a stronger response to increasing the midlevel moisture compared to initially small vortices. Previous studies have noted a proclivity for relatively small TCs to stay small and relatively large TCs to stay large; that is, TCs possess a sort of “memory” with respect to their incipient circulation. We reproduce this finding with an independent modeling framework and further demonstrate that an initially large vortex can expand more quickly than its relatively smaller counterpart; therefore, with all other factors contributing to expansion held constant, the contrast in size between the two vortices willincreasewith time. Varying the incipient vortex circulation is associated with subsequent variations in the amount and scale of outer‐core convection. As the incipient vortex circulation decreases, outer‐core convection is relatively scarce and characterized by small‐scale, isolated convective elements. On the contrary, as the incipient vortex circulation increases, outer‐core convection abounds and is characterized by relatively large rainbands and mesoscale convective systems. A combined increase in the amount and scale of outer‐core convection permits an initially large vortex to converge a substantially greater amount of absolute angular momentum compared to its relatively smaller counterpart, resulting in distinct expansion rates.

     
    more » « less
  3. Abstract

    The topological charge (TC) inversion of optical vortex is demonstrated along the beam propagation direction by using plasmonic geometric metasurfaces with the initial wave fronts designed from the principle of caustic surface. The detailed TC inversion evolution process is observed together with the transmutation point where the vortex vanishes. The orbital angular momentum (OAM) mode distributions during the TC inversion process are studied to show the dynamic redistributions of OAM mode density between the central area and the surrounding area of the beam with the total OAM conserved. Furthermore, the TC inversion of self‐accelerating vortex beam along the parabolic trajectory is presented. The realization of controlling TC inversion of optical vortex along arbitrary beam trajectory paves the way for many applications with more complex functionalities in optical trapping and manipulation, optical sensing, quantum information and computation, and data communication.

     
    more » « less
  4. One-quarter of the world’s tropical cyclones (TCs) occur in the Indian Ocean (IO) basin.The mechanisms for TC initiation in the IO are varied, but one recently discovered process involves the flow around the steep topography of Sumatra.  When the low-level flow impinges on Sumatra, it is blocked and the flow splits under typical environmental stratification.  As a result, wake vortices commonly develop at northern and southern island tips of the island. For the case of easterly flow, these circulationssubsequently move downstream over the IO.  The wake vortices emanating from the island tips are counter-rotating, but since Sumatra straddles the equator, the circulations are cyclonic in both hemispheres and thus have the potential for TC development. Using data from2.5yearsof observations from DYNAMO and YOTC, it is found that approximately 25% of the TCsthat occurred overIO basin during that periodwere initiated by Sumatra-induced wake vortices.Additional analysis of vortex statistics for the period 2008-17 has found that vortex counts are highest near Madden-Julian Oscillation (MJO) phase 1 when low-level easterlies are strongest across southern Sumatra. A secondary peak in vortex formation occurs during MJO phase 4 when low-level westerlies exist near the equator west of Sumatra. The latter finding suggests that MJO-related, low-level westerly surges on the equator impinging on Sumatracontribute to an increase in wake vortex development.  Numerical simulations have shown that circulations farther upstream such aswestern Pacific remnant TCs and the Borneo vortex can influence the development of Sumatra wake vortices and their growth into TCs over the IO. 
    more » « less
  5. Abstract

    The free‐space optical vortex transmutation is realized by using geometric plasmonic metasurfaces with the designed noncanonical vortex phase profiles possessing discrete rotational symmetries of finite order. Based on the introduced continuous‐to‐discrete rotational symmetry breaking in metasurfaces, the vortex transmutation phenomena are observed behind the metasurfaces from the near‐field to far‐field diffraction in free space. The near‐field optical beam profile represents the input vortex, while in the far field the input vortex is diffracted into the central output vortex with topological charge determined by the transmutation rule and the symmetrically distributed off‐axis vortices with unity topological charge bifurcating from the input vortex, with the total orbital angular momentum conserved. The demonstrated free‐space optical vortex transformation will promise many potential applications related to optical communication, particle manipulation, and quantum information processing.

     
    more » « less