Spanning across the Equator with a northwest-southeast orientation, the island of Sumatra can exert significant influences on low-level flow. Under northeasterly flow, in particular, lee vortices can form and some of them may subsequently develop into tropical cyclones (TCs) in the Indian Ocean (IO). Building upon the recent work of Fine et al. (2016), this study investigates the roles of the Sumatra topography and other common features on the formation of selected cases for analysis and numerical experiments. Four cases in northern IO were selected for analysis and two of them [Nisha (2008) and Ward 2009)] for simulation at a grid size of 4 km. Sensitivity tests without the Sumatra topography were also performed. Our results indicate that during the lee stage, most pre-TC vortices tend to be stronger with a clearer circulation when the topography is present. However, the island’s terrain is a helpful but not a deciding factor in TC formation. Specifically, the vortices in the no-terrain tests also reach TC status, but just at a later time. Some common ingredients contributing to a favorable environment for TC genesis are identified. They include northeasterly winds near northern Sumatra, westerly wind bursts along the equator, and migratory disturbances (TC remnants or Borneo vortices) to provide additional vorticity/moisture from the South China Sea. These factors also appear in most of the 22 vortices in northern IO during October-December in 2008 and 2009. For the sole case (Cleo) examined in southern IO, the deflection of equatorial westerlies into northwesterlies by Sumatra (on the windward side) is also helpful to TC formation.
more »
« less
Effects of the Topography of Sumatra on Tropical Cyclone Formation over the Indian Ocean
One-quarter of the world’s tropical cyclones (TCs) occur in the Indian Ocean (IO) basin.The mechanisms for TC initiation in the IO are varied, but one recently discovered process involves the flow around the steep topography of Sumatra. When the low-level flow impinges on Sumatra, it is blocked and the flow splits under typical environmental stratification. As a result, wake vortices commonly develop at northern and southern island tips of the island. For the case of easterly flow, these circulationssubsequently move downstream over the IO. The wake vortices emanating from the island tips are counter-rotating, but since Sumatra straddles the equator, the circulations are cyclonic in both hemispheres and thus have the potential for TC development. Using data from2.5yearsof observations from DYNAMO and YOTC, it is found that approximately 25% of the TCsthat occurred overIO basin during that periodwere initiated by Sumatra-induced wake vortices.Additional analysis of vortex statistics for the period 2008-17 has found that vortex counts are highest near Madden-Julian Oscillation (MJO) phase 1 when low-level easterlies are strongest across southern Sumatra. A secondary peak in vortex formation occurs during MJO phase 4 when low-level westerlies exist near the equator west of Sumatra. The latter finding suggests that MJO-related, low-level westerly surges on the equator impinging on Sumatracontribute to an increase in wake vortex development. Numerical simulations have shown that circulations farther upstream such aswestern Pacific remnant TCs and the Borneo vortex can influence the development of Sumatra wake vortices and their growth into TCs over the IO.
more »
« less
- Award ID(s):
- 1853633
- PAR ID:
- 10455981
- Date Published:
- Journal Name:
- MAUSAM
- Volume:
- 74
- Issue:
- 2
- ISSN:
- 0252-9416
- Page Range / eLocation ID:
- 389 to 396
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Previous studies demonstrate that the Madden-Julian Oscillation (MJO) modulates tropical cyclone (TC) activity over various locations worldwide. Since TCs are associated with anomalous large-scale circulations, they can influence the development of the MJO. However, the impact of TC on the MJO has not been thoroughly examined. This study investigates the influence of TC-associated processes on the MJO development based on the analysis of a case observed during the Dynamics of the Madden-Julian Oscillation field campaign. During the suppressed phase before the December 2011 MJO initiation, two TCs were active in the southern Tropical Indian Ocean (TIO). A dry air band within 10°S-Eq is sustained by TC-induced horizontal advection and descent, inhibiting large-scale convection in the southern equatorial IO. Consequently, convection is triggered and develops only in the northern TIO around Eq-10°N. The MJO initiates as convection develops south of the equator after the TCs dissipate.more » « less
-
Abstract Previous studies demonstrate that the Madden‐Julian Oscillation (MJO) modulates tropical cyclone (TC) activity over various locations worldwide. Since TCs are associated with anomalous large‐scale circulations, they can influence the development of the MJO. However, the impact of TC on the MJO has not been thoroughly examined. This study investigates the influence of TC‐associated processes on the MJO development based on the analysis of a case observed during the Dynamics of the Madden‐Julian Oscillation field campaign. During the suppressed phase before the December 2011 MJO initiation, two TCs were active in the southern Tropical Indian Ocean (TIO). A dry air band within 10°S‐Eq is sustained by TC‐induced horizontal advection and descent, inhibiting large‐scale convection in the southern equatorial IO. Consequently, convection is triggered and develops only in the northern TIO around Eq‐10°N. The MJO initiates as convection develops south of the equator after the TCs dissipate.more » « less
-
The Madden–Julian Oscillation (MJO) is a planetary-scale weather system that creates a 30–60 day oscillation in zonal winds and precipitation in the tropics. Its envelope of enhanced rainfall forms over the Indian Ocean and moves slowly eastward before dissipating near the Date Line. The MJO modulates tropical cyclone (TC) genesis, intensity, and landfall in the Indian, Pacific, and Atlantic Oceans. This study examines the mechanisms by which the MJO alters TC genesis. In particular, MJO circulations are partitioned into Kelvin and Rossby waves for each of the developing, mature, and dissipating stages of the convective envelope, and locations of TC genesis are related to these circulations. Throughout the MJO’s convective life cycle, TC genesis is inhibited to the east of the convective envelope, and enhanced just west of the convective envelope. The inhibition of TC genesis to the east of the MJO is largely due to vertical motion associated with the Kelvin wave circulation, as is the enhancement of TC genesis just west of the MJO during the developing stage. During the mature and dissipating stages, the MJO’s Rossby gyres intensify, creating regions of low-level vorticity, favoring TC genesis to its west. Over the 36-year period considered here, the MJO modulation of TC genesis increases due to the intensification of the MJO’s Kelvin wave circulation.more » « less
-
null (Ed.)Abstract Tropical cyclogenesis (TCG) is a multiscale process that involves interactions between large-scale circulation and small-scale convection. A near-global aquaplanet cloud-resolving model (NGAqua) with 4-km horizontal grid spacing that produces tropical cyclones (TCs) is used to investigate TCG and its predictability. This study analyzes an ensemble of three 20-day NGAqua simulations, with initial white-noise perturbations of low-level humidity. TCs develop spontaneously from the northern edge of the intertropical convergence zone (ITCZ), where large-scale flows and tropical convection provide necessary conditions for barotropic instability. Zonal bands of positive low-level absolute vorticity organize into cyclonic vortices, some of which develop into TCs. A new algorithm is developed to track the cyclonic vortices. A vortex-following framework analysis of the low-level vorticity budget shows that vertical stretching of absolute vorticity due to convective heating contributes positively to the vorticity spinup of the TCs. A case study and composite analyses suggest that sufficient humidity is key for convective development. TCG in these three NGAqua simulations undergoes the same series of interactions. The locations of cyclonic vortices are broadly predetermined by planetary-scale circulation and humidity patterns associated with ITCZ breakdown, which are predictable up to 10 days. Whether and when the cyclonic vortices become TCs depend on the somewhat more random feedback between convection and vorticity.more » « less
An official website of the United States government

