skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: "In Eighty Percent of the Cases, I Select the Password for Them": Security and Privacy Challenges, Advice, and Opportunities at Cybercafes in Kenya
Award ID(s):
1845300
PAR ID:
10472947
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE Computer Society
Date Published:
Journal Name:
2023 IEEE Symposium on Security and Privacy
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The cosmic evolution of the chemical elements from the Big Bang to the present time is driven by nuclear fusion reactions inside stars and stellar explosions. A cycle of matter recurrently re-processes metal-enriched stellar ejecta into the next generation of stars. The study of cosmic nucleosynthesis and this matter cycle requires the understanding of the physics of nuclear reactions, of the conditions at which the nuclear reactions are activated inside the stars and stellar explosions, of the stellar ejection mechanisms through winds and explosions, and of the transport of the ejecta towards the next cycle, from hot plasma to cold, star-forming gas. Due to the long timescales of stellar evolution, and because of the infrequent occurrence of stellar explosions, observational studies are challenging, as they have biases in time and space as well as different sensitivities related to the various astronomical methods. Here, we describe in detail the astrophysical and nuclear-physical processes involved in creating two radioactive isotopes useful in such studies, $$^{26}\mathrm{Al}$$ and $$^{60}\mathrm{Fe}$$ . Due to their radioactive lifetime of the order of a million years, these isotopes are suitable to characterise simultaneously the processes of nuclear fusion reactions and of interstellar transport. We describe and discuss the nuclear reactions involved in the production and destruction of $$^{26}\mathrm{Al}$$ and $$^{60}\mathrm{Fe}$$ , the key characteristics of the stellar sites of their nucleosynthesis and their interstellar journey after ejection from the nucleosynthesis sites. This allows us to connect the theoretical astrophysical aspects to the variety of astronomical messengers presented here, from stardust and cosmic-ray composition measurements, through observation of $$\gamma$$ rays produced by radioactivity, to material deposited in deep-sea ocean crusts and to the inferred composition of the first solids that have formed in the Solar System. We show that considering measurements of the isotopic ratio of $$^{26}\mathrm{Al}$$ to $$^{60}\mathrm{Fe}$$ eliminate some of the unknowns when interpreting astronomical results, and discuss the lessons learned from these two isotopes on cosmic chemical evolution. This review paper has emerged from an ISSI-BJ Team project in 2017–2019, bringing together nuclear physicists, astronomers, and astrophysicists in this inter-disciplinary discussion. 
    more » « less
  2. Abstract In a previous paper, we identified a “notch” in unstable layers at Koror (7.3°N, 134.5°E), where there was a relative deficiency in thin unstable layers and a corresponding relative excess in thicker layers, at altitudes centered at 12 km. We hypothesized that this feature was associated with the previously identified stability minimum in the tropics at that same altitude. In this paper, we extend our studies of this notch and its association with the tropical stability minimum by examining other stations in the deep tropics and also some stations at higher latitudes within the tropics. We find that this notch feature is found at all the other radiosonde stations in the deep tropics that we examined. We also find that the annual variations in unstable layer occurrences at stations at higher latitudes within the tropics show variations consistent with our hypothesis that this notch is associated with the region of minimum stability in the tropics at altitudes centered around 12 km, in that the annual variation in this notch feature is consistent with the annual variation of minimum stability in this region. Two factors contribute to the notch feature. One is that the data quality control procedure of the analysis rejects many thin layers due to the small trend-to-noise ratio in the region of minimum stability. The other is that the cloud-top outflow, which was previously identified with the stability minimum, advects thicker unstable layers throughout the deep tropics at the altitudes of the notch. Significance StatementPrevious papers have separately identified a stability minimum in the tropics and a “notch” feature in the thicknesses of unstable atmospheric layers where there are less thin unstable layers and a corresponding excess of thicker unstable layers, both at altitudes around 12 km. We previously hypothesized that these two features were associated with one another. In this paper, we examine this notch feature and the minimum in atmospheric stability at both deep tropical radiosonde stations and stations located at higher latitudes in the tropics, and we find that the annual variation of this notch feature is consistent with the latitudinal migration of the latitudes of the stability minimum. Turbulence associated with this notch feature might be significant for aircraft operations. 
    more » « less
  3. Building on calls for “slow scholarship,” we highlight the importance of time and care in producing rigorous, ethical research through our advising practices. We describe how feminist ethics and epistemologies shape each of our research clusters: the Hydro‐Feminist Lab at West Virginia University and the Feminist Geography Collective at the University of Texas at Austin. We show a couple of ways that feminist geographers can adopt the “lab model” and use it to build meaningful mentoring networks, fostered through time and care, and in a way that both meets and transgresses the demands of academic neoliberalism. We then show how this approach extends into our fieldwork, recounting instances where the importance of mentoring over time and through a caring ethic surface. Unfolding over weeks, months, and years we show the value of time and care, both in deepening the quality of advising relationships and in creating mentoring relationships of trust and support. We contend that this better prepares students for the intellectual and emotional challenges of feminist that research and, in turn, strengthens that research. In the face of neoliberalism's quickening drives, we highlight the benefits and the contradictions of this kind of slow and caring “lab‐field” feminist mentoring for geographic research. 
    more » « less