skip to main content


This content will become publicly available on August 31, 2024

Title: In Situ Controlled Growth of Strongly Quantum Confined CsPbBr 3 /FAPbBr 3 Core/Crown Nanoplatelets for Blue Light Emitting Diodes
Abstract

A few unit cells of thick colloidal CsPbBr3nanoplatelets (NPLs) exhibit strong quantum confinement. However, due to the increased surface‐to‐volume ratio, they show poor photoluminescence quantum yield (PLQY) resulting from surface traps. Here, a unique, quantum‐confined core/crown perovskite is reported for the first time, where the CsPbBr3NPL surface is passivated by laterally grown thin FAPbBr3crown layers. Unlike regular core/shells, the FAPbBr3is coated around the core NPLs resulting in blue emission. Careful control of the growth kinetics while monitoring growth using in situ PL led to the formation of core/crown perovskites with nearly two times improvement in thin film PLQYs. HR‐TEM analyses show that the interplanar distances of the core match with CsPbBr3and the crown match with FAPbBr3. The XRD and TEM analyses revealed that their thickness remains the same even if Cs+to FA+ratios are varied, indicating lateral growth of FAPbBr3around the CsPbBr3core. Further, FA+ions in the crown lattice are confirmed by FTIR and1HNMR. Finally, considering their high PLQYs and narrow linewidths, the core/crown NPLs are employed as blue emitters in light‐emitting diodes, and a maximum external quantum efficiency of 0.4% at 2.71 eV (457 nm) with a luminance of 513 cd m−2is achieved.

 
more » « less
NSF-PAR ID:
10473090
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Optical Materials
Volume:
11
Issue:
21
ISSN:
2195-1071
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Metal halide perovskite nanocrystals (NCs) have emerged as highly promising light emitting materials for various applications, ranging from perovskite light‐emitting diodes (PeLEDs) to lasers and radiation detectors. While remarkable progress has been achieved in highly efficient and stable green, red, and infrared perovskite NCs, obtaining efficient and stable blue‐emitting perovskite NCs remains a great challenge. Here, a facile synthetic approach for the preparation of blue emitting CsPbBr3nanoplatelets (NPLs) with treatment by an organic sulfate is reported, 2,2‐(ethylenedioxy) bis(ethylammonium) sulfate (EDBESO4), which exhibit remarkably enhanced photoluminescence quantum efficiency (PLQE) and stability as compared to pristine CsPbBr3NPLs coated with oleylamines. The PLQE is improved from ≈28% for pristine CsPbBr3NPLs to 85% for EDBESO4treated CsPbBr3NPLs. Detailed structural characterizations reveal that EDBESO4treatment leads to surface passivation of CsPbBr3NPLs by both EDBE2+and SO42–ions, which helps to prevent the coalescence of NPLs and suppress the degradation of NPLs. A simple proof‐of‐concept device with emission peaked at 462 nm exhibits an external quantum efficiency of 1.77% with a luminance of 691 cd m−2and a half‐lifetime of 20 min, which represents one of the brightest pure blue PeLEDs based on NPLs reported to date.

     
    more » « less
  2. We present a size-selective method for purifying and isolating perovskite CsPbBr 3 nanocrystals (NCs) that preserves their as-synthesized surface chemistry and extremely high photoluminescence quantum yields (PLQYs). The isolation procedure is based on the stepwise evaporation of nonpolar co-solvents with high vapor pressure to promote precipitation of a size-selected product. As the sample fractions become more uniform in size, we observe that the NCs self-assemble into colloidally stable, solution-phase superlattices (SLs). Small angle X-ray scattering (SAXS) and dynamic light scattering (DLS) studies show that the solution-phase SLs contain 1000s of NCs per supercrystal in a simple cubic, face-to-face packing arrangement. The SLs also display systematically faster radiative decay dynamics and improved PLQYs, as well as unique spectral absorption features likely resulting from inter-particle electronic coupling effects. This study is the first demonstration of solution-phase CsPbBr 3 SLs and highlights their potential for achieving collective optoelectronic phenomena previously observed from solid-state assemblies. 
    more » « less
  3. Abstract

    All‐inorganic lead halide perovskite nanocrystals (NCs) have great optoelectronic properties with promising applications in light‐emitting diodes (LEDs), lasers, photodetectors, solar cells, and photocatalysis. However, the intrinsic toxicity of Pb and instability of the NCs impede their broad applications. Shell‐coating is an effective method for enhanced environmental stability while reducing toxicity by choosing non‐toxic shell materials such as metal oxides, polymers, silica, etc. However, multiple perovskite NCs can be encapsulated within the shell material and a uniform epitaxial‐type shell growth of well‐isolated NCs is still challenging. In this work, lead‐free vacancy‐ordered double perovskite Cs2SnX6(X = Cl, Br, and I) shells are epitaxially grown on the surface of CsPbX3NCs by a hot‐injection method. The effectiveness of the non‐toxic double perovskite shell protection is demonstrated by the enhanced environmental and phase stability against UV illumination and water. In addition, the photoluminescence quantum yields (PL QYs) increase for the CsPbCl3and CsPbBr3NCs after shelling because of the type I band alignment of the core/shell materials, while enhanced charge transport properties obtained from CsPbI3/Cs2SnI6core/shell NCs are due to the efficient charge separation in the type II core/shell band alignment.

     
    more » « less
  4. Abstract

    Blue electroluminescence is highly desired for emerging light‐emitting devices for display applications and optoelectronics in general. However, saturated, efficient, and stable blue emission has been challenging to achieve, particularly in mixed‐halide perovskites, where intrinsic ion motion and halide segregation compromises spectral purity. Here, CsPbBr3−xClxperovskites, polyelectrolytes, and a salt additive are leveraged to demonstrate pure blue emission from single‐layer light‐emitting electrochemical cells (LECs). The electrolytes transport the ions from salt additives, enhancing charge injection and stabilizing the inherent perovskite emissive lattice for highly pure and sustained blue emission. Substituting Cl into CsPbBr3tunes the perovskite luminescence from green through blue. Sky blue and saturated blue devices produce International Commission on Illumination coordinates of (0.105, 0.129) and (0.136, 0.068), respectively, with the latter meeting the US National Television Committee standard for the blue primary. Likewise, maximum luminances of 2900 and 1000 cd m−2, external quantum efficiencies (EQEs) of 4.3% and 3.9%, and luminance half‐lives of 5.7 and 4.9 h are obtained for sky blue and saturated blue devices, respectively. Polymer and LiPF6inclusion increases photoluminescence efficiency, suppresses halide segregation, induces thin‐film smoothness and uniformity, and reduces crystallite size. Overall, these devices show superior performance among blue perovskite light‐emitting diodes (PeLEDs) and general LECs.

     
    more » « less
  5. Abstract

    The surface of CH3NH3PbBr3perovskite nanocrystals (PNCs) plays a critical role in determining their optical properties and stability. The introduction of capping ligands can enhance photoluminescence (PL), reduce non‐radiative recombination, and improve stability. Here, we report a facile synthesis of CH3NH3PbBr3PNCs with strong and highly stable green PL using melamine (Mela) as a simple and low‐cost capping ligand. The resulting CH3NH3PbBr3/Mela PNCs have cubic phase crystal structure with an average particle size of 5.29±0.06 nm. The optical absorption and PL of the CH3NH3PbBr3/Mela PNCs with narrow bandwidth can be tuned within the visible region, and the PL quantum yield (QY) reached 52.3% compared to 0.4% the pristine CH3NH3PbBr3PNCs. A synergistic effect between NH3+and the electron‐rich nitrogen atoms together with p‐p stacking capacity, likely contributes to enhance the PL by effectively passivating of the trap states of PNCs. Furthermore, melamine‐capped PNCs show high stability in protic solvents as a result of the steric bulkiness of the triazine rings, owing to the planar structure together with hydrogen bonding of melamine, which prevents solvent molecules from reaching and reacting with the core of PNCs. This study demonstrates a simple and effective approach for stabilizing PNCs for potential applications such as solar cells and LEDs.

     
    more » « less