Processing facial expressions of emotion draws on a distributed brain network. In particular, judging ambiguous facial emotions involves coordination between multiple brain areas. Here, we applied multimodal functional connectivity analysis to achieve network-level understanding of the neural mechanisms underlying perceptual ambiguity in facial expressions. We found directional effective connectivity between the amygdala, dorsomedial prefrontal cortex (dmPFC), and ventromedial PFC, supporting both bottom-up affective processes for ambiguity representation/perception and top-down cognitive processes for ambiguity resolution/decision. Direct recordings from the human neurosurgical patients showed that the responses of amygdala and dmPFC neurons were modulated by the level of emotion ambiguity, and amygdala neurons responded earlier than dmPFC neurons, reflecting the bottom-up process for ambiguity processing. We further found parietal-frontal coherence and delta-alpha cross-frequency coupling involved in encoding emotion ambiguity. We replicated the EEG coherence result using independent experiments and further showed modulation of the coherence. EEG source connectivity revealed that the dmPFC top-down regulated the activities in other brain regions. Lastly, we showed altered behavioral responses in neuropsychiatric patients who may have dysfunctions in amygdala-PFC functional connectivity. Together, using multimodal experimental and analytical approaches, we have delineated a neural network that underlies processing of emotion ambiguity.
Face perception is a fundamental aspect of human social interaction, yet most research on this topic has focused on single modalities and specific aspects of face perception. Here, we present a comprehensive multimodal dataset for examining facial emotion perception and judgment. This dataset includes EEG data from 97 unique neurotypical participants across 8 experiments, fMRI data from 19 neurotypical participants, single-neuron data from 16 neurosurgical patients (22 sessions), eye tracking data from 24 neurotypical participants, behavioral and eye tracking data from 18 participants with ASD and 15 matched controls, and behavioral data from 3 rare patients with focal bilateral amygdala lesions. Notably, participants from all modalities performed the same task. Overall, this multimodal dataset provides a comprehensive exploration of facial emotion perception, emphasizing the importance of integrating multiple modalities to gain a holistic understanding of this complex cognitive process. This dataset serves as a key missing link between human neuroimaging and neurophysiology literature, and facilitates the study of neuropsychiatric populations.
more » « less- Award ID(s):
- 1945230
- NSF-PAR ID:
- 10473150
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Data
- Volume:
- 10
- Issue:
- 1
- ISSN:
- 2052-4463
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Faces are salient social stimuli that attract a stereotypical pattern of eye movement. The human amygdala and hippocampus are involved in various aspects of face processing; however, it remains unclear how they encode the content of fixations when viewing faces. To answer this question, we employed single-neuron recordings with simultaneous eye tracking when participants viewed natural face stimuli. We found a class of neurons in the human amygdala and hippocampus that encoded salient facial features such as the eyes and mouth. With a control experiment using non-face stimuli, we further showed that feature selectivity was specific to faces. We also found another population of neurons that differentiated saccades to the eyes vs. the mouth. Population decoding confirmed our results and further revealed the temporal dynamics of face feature coding. Interestingly, we found that the amygdala and hippocampus played different roles in encoding facial features. Lastly, we revealed two functional roles of feature-selective neurons: 1) they encoded the salient region for face recognition, and 2) they were related to perceived social trait judgments. Together, our results link eye movement with neural face processing and provide important mechanistic insights for human face perception.
-
In the realm of virtual reality (VR) research, the synergy of methodological advancements, technical innovation, and novel applications is paramount. Our work encapsulates these facets in the context of spatial ability assessments conducted within a VR environment. This paper presents a comprehensive and integrated framework of VR, eye-tracking, and electroencephalography (EEG), which seamlessly combines measuring participants’ behavioral performance and simultaneously collecting time-stamped eye tracking and EEG data to enable understanding how spatial ability is impacted in certain conditions and if such conditions demand increased attention and mental allocation. This framework encompasses the measurement of participants’ gaze pattern (e.g., fixation and saccades), EEG data (e.g., Alpha, Beta, Gamma, and Theta wave patterns), and psychometric and behavioral test performance. On the technical front, we utilized the Unity 3D game engine as the core for running our spatial ability tasks by simulating altered conditions of space exploration. We simulated two types of space exploration conditions: (1) microgravity condition in which participants’ idiotropic (body) axis is in statically and dynamically misaligned with their visual axis; and (2) conditions of Martian terrain that offers a visual frame of reference (FOR) but with limited and unfamiliar landmarks objects. We specifically targeted assessing human spatial ability and spatial perception. To assess spatial ability, we digitalized behavioral tests of Purdue Spatial Visualization Test: Rotations (PSVT: R), the Mental Cutting Test (MCT), and the Perspective Taking Ability (PTA) test and integrated them into the VR settings to evaluate participants’ spatial visualization, spatial relations, and spatial orientation ability, respectively. For spatial perception, we applied digitalized versions of size and distance perception tests to measure participants’ subjective perception of size and distance. A suite of C# scripts orchestrated the VR experience, enabling real-time data collection and synchronization. This technical innovation includes the integration of data streams from diverse sources, such as VIVE controllers, eye-tracking devices, and EEG hardware, to ensure a cohesive and comprehensive dataset. A pivotal challenge in our research was synchronizing data from EEG, eye tracking, and VR tasks to facilitate comprehensive analysis. To address this challenge, we employed the Unity interface of the OpenSync library, a tool designed to unify disparate data sources in the fields of psychology and neuroscience. This approach ensures that all collected measures share a common time reference, enabling meaningful analysis of participant performance, gaze behavior, and EEG activity. The Unity-based system seamlessly incorporates task parameters, participant data, and VIVE controller inputs, providing a versatile platform for conducting assessments in diverse domains. Finally, we were able to collect synchronized measurements of participants’ scores on the behavioral tests of spatial ability and spatial perception, their gaze data and EEG data. In this paper, we present the whole process of combining the eye-tracking and EEG workflows into the VR settings and collecting relevant measurements. We believe that our work not only advances the state-of-the-art in spatial ability assessments but also underscores the potential of virtual reality as a versatile tool in cognitive research, therapy, and rehabilitation.
-
Abstract Effective interactions between humans and robots are vital to achieving shared tasks in collaborative processes. Robots can utilize diverse communication channels to interact with humans, such as hearing, speech, sight, touch, and learning. Our focus, amidst the various means of interactions between humans and robots, is on three emerging frontiers that significantly impact the future directions of human–robot interaction (HRI): (i) human–robot collaboration inspired by human–human collaboration, (ii) brain-computer interfaces, and (iii) emotional intelligent perception. First, we explore advanced techniques for human–robot collaboration, covering a range of methods from compliance and performance-based approaches to synergistic and learning-based strategies, including learning from demonstration, active learning, and learning from complex tasks. Then, we examine innovative uses of brain-computer interfaces for enhancing HRI, with a focus on applications in rehabilitation, communication, brain state and emotion recognition. Finally, we investigate the emotional intelligence in robotics, focusing on translating human emotions to robots via facial expressions, body gestures, and eye-tracking for fluid, natural interactions. Recent developments in these emerging frontiers and their impact on HRI were detailed and discussed. We highlight contemporary trends and emerging advancements in the field. Ultimately, this paper underscores the necessity of a multimodal approach in developing systems capable of adaptive behavior and effective interaction between humans and robots, thus offering a thorough understanding of the diverse modalities essential for maximizing the potential of HRI.
-
The expression of human emotion is integral to social interaction, and in virtual reality it is increasingly common to develop virtual avatars that attempt to convey emotions by mimicking these visual and aural cues, i.e. the facial and vocal expressions. However, errors in (or the absence of) facial tracking can result in the rendering of incorrect facial expressions on these virtual avatars. For example, a virtual avatar may speak with a happy or unhappy vocal inflection while their facial expression remains otherwise neutral. In circumstances where there is conflict between the avatar's facial and vocal expressions, it is possible that users will incorrectly interpret the avatar's emotion, which may have unintended consequences in terms of social influence or in terms of the outcome of the interaction. In this paper, we present a human-subjects study (N = 22) aimed at understanding the impact of conflicting facial and vocal emotional expressions. Specifically we explored three levels of emotional valence (unhappy, neutral, and happy) expressed in both visual (facial) and aural (vocal) forms. We also investigate three levels of head scales (down-scaled, accurate, and up-scaled) to evaluate whether head scale affects user interpretation of the conveyed emotion. We find significant effects of different multimodal expressions on happiness and trust perception, while no significant effect was observed for head scales. Evidence from our results suggest that facial expressions have a stronger impact than vocal expressions. Additionally, as the difference between the two expressions increase, the less predictable the multimodal expression becomes. For example, for the happy-looking and happy-sounding multimodal expression, we expect and see high happiness rating and high trust, however if one of the two expressions change, this mismatch makes the expression less predictable. We discuss the relationships, implications, and guidelines for social applications that aim to leverage multimodal social cues.more » « less