skip to main content


Title: The K-mer antibiotic resistance gene variant analyzer (KARGVA)

Characterization of antibiotic resistance genes (ARGs) from high-throughput sequencing data of metagenomics and cultured bacterial samples is a challenging task, with the need to account for both computational (e.g., string algorithms) and biological (e.g., gene transfers, rearrangements) aspects. Curated ARG databases exist together with assorted ARG classification approaches (e.g., database alignment, machine learning). Besides ARGs that naturally occur in bacterial strains or are acquired through mobile elements, there are chromosomal genes that can render a bacterium resistant to antibiotics through point mutations, i.e., ARG variants (ARGVs). While ARG repositories also collect ARGVs, there are only a few tools that are able to identify ARGVs from metagenomics and high throughput sequencing data, with a number of limitations (e.g., pre-assembly,a posterioriverification of mutations, or specification of species). In this work we present thek-mer, i.e., strings of fixed lengthk, ARGV analyzer – KARGVA – an open-source, multi-platform tool that provides: (i) anad hoc, large ARGV database derived from multiple sources; (ii) input capability for various types of high-throughput sequencing data; (iii) a three-way, hash-based,k-mer search setup to process data efficiently, linkingk-mers to ARGVs,k-mers to point mutations, and ARGVs tok-mers, respectively; (iv) a statistical filter on sequence classification to reduce type I and II errors. On semi-synthetic data, KARGVA provides very high accuracy even in presence of high sequencing errors or mutations (99.2 and 86.6% accuracy within 1 and 5% base change rates, respectively), and genome rearrangements (98.2% accuracy), with robust performance onad hocfalse positive sets. On data from the worldwide MetaSUB consortium, comprising 3,700+ metagenomics experiments, KARGVA identifies more ARGVs than Resistance Gene Identifier (4.8x) and PointFinder (6.8x), yet all predictions are below the expected false positive estimates. The prevalence of ARGVs is correlated to ARGs but ecological characteristics do not explain well ARGV variance. KARGVA is publicly available athttps://github.com/DataIntellSystLab/KARGVAunder MIT license.

 
more » « less
Award ID(s):
2013998
NSF-PAR ID:
10473208
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Frontiers (publisher); Web of Science, PubMed (repositories)
Date Published:
Journal Name:
Frontiers in Microbiology
Volume:
14
ISSN:
1664-302X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    High-throughput sequencing is widely used for strain detection and characterization of antibiotic resistance in microbial metagenomic samples. Current analytical tools use curated antibiotic resistance gene (ARG) databases to classify individual sequencing reads or assembled contigs. However, identifying ARGs from raw read data can be time consuming (especially if assembly or alignment is required) and challenging, due to genome rearrangements and mutations. Here, we present the k-mer-based antibiotic gene resistance analyzer (KARGA), a multi-platform Java toolkit for identifying ARGs from metagenomic short read data. KARGA does not perform alignment; it uses an efficient double-lookup strategy, statistical filtering on false positives, and provides individual read classification as well as covering of the database resistome. On simulated data, KARGA’s antibiotic resistance class recall is 99.89% for error/mutation rates within 10%, and of 83.37% for error/mutation rates between 10% and 25%, while it is 99.92% on ARGs with rearrangements. On empirical data, KARGA provides higher hit score (≥1.5-fold) than AMRPlusPlus, DeepARG, and MetaMARC. KARGA has also faster runtimes than all other tools (2x faster than AMRPlusPlus, 7x than DeepARG, and over 100x than MetaMARC). KARGA is available under the MIT license at https://github.com/DataIntellSystLab/KARGA. 
    more » « less
  2. Nanopore technology enables portable, real-time sequencing of microbial populations from clinical and ecological samples. An emerging healthcare application for Nanopore includes point-of-care, timely identification of antibiotic resistance genes (ARGs) to help developing targeted treatments of bacterial infections, and monitoring resistant outbreaks in the environment. While several computational tools exist for classifying ARGs from sequencing data, to date (2022) none have been developed for mobile devices. We present here KARGAMobile, a mobile app for portable, real-time, easily interpretable analysis of ARGs from Nanopore sequencing. KARGAMobile is the porting of an existing ARG identification tool named KARGA; it retains the same algorithmic structure, but it is optimized for mobile devices. Specifically, KARGAMobile employs a compressed ARG reference database and different internal data structures to save RAM usage. The KARGAMobile app features a friendly graphical user interface that guides through file browsing, loading, parameter setup, and process execution. More importantly, the output files are post-processed to create visual, printable and shareable reports, aiding users to interpret the ARG findings. The difference in classification performance between KARGAMobile and KARGA is minimal (96.2% vs . 96.9% f-measure on semi-synthetic datasets of 1 million reads with known resistance ground truth). Using real Nanopore experiments, KARGAMobile processes on average 1 GB data every 23–48 min (targeted sequencing - metagenomics), with peak RAM usage below 500MB, independently from input file sizes, and an average temperature of 49°C after 1 h of continuous data processing. KARGAMobile is written in Java and is available at https://github.com/Ruiz-HCI-Lab/KargaMobile under the MIT license. 
    more » « less
  3. ABSTRACT Little is known about the public health risks associated with natural creek sediments that are affected by runoff and fecal pollution from agricultural and livestock practices. For instance, the persistence of foodborne pathogens such as Shiga toxin-producing Escherichia coli (STEC) originating from these practices remains poorly quantified. Towards closing these knowledge gaps, the water-sediment interface of two creeks in the Salinas River Valley of California was sampled over a 9-month period using metagenomics and traditional culture-based tests for STEC. Our results revealed that these sediment communities are extremely diverse and have functional and taxonomic diversity comparable to that observed in soils. With our sequencing effort (∼4 Gbp per library), we were unable to detect any pathogenic E. coli in the metagenomes of 11 samples that had tested positive using culture-based methods, apparently due to relatively low abundance. Furthermore, there were no significant differences in the abundance of human- or cow-specific gut microbiome sequences in the downstream impacted sites compared to that in upstream more pristine (control) sites, indicating natural dilution of anthropogenic inputs. Notably, the high number of metagenomic reads carrying antibiotic resistance genes (ARGs) found in all samples was significantly higher than ARG reads in other available freshwater and soil metagenomes, suggesting that these communities may be natural reservoirs of ARGs. The work presented here should serve as a guide for sampling volumes, amount of sequencing to apply, and what bioinformatics analyses to perform when using metagenomics for public health risk studies of environmental samples such as sediments. IMPORTANCE Current agricultural and livestock practices contribute to fecal contamination in the environment and the spread of food- and waterborne disease and antibiotic resistance genes (ARGs). Traditionally, the level of pollution and risk to public health are assessed by culture-based tests for the intestinal bacterium Escherichia coli . However, the accuracy of these traditional methods (e.g., low accuracy in quantification, and false-positive signal when PCR based) and their suitability for sediments remain unclear. We collected sediments for a time series metagenomics study from one of the most highly productive agricultural regions in the United States in order to assess how agricultural runoff affects the native microbial communities and if the presence of Shiga toxin-producing Escherichia coli (STEC) in sediment samples can be detected directly by sequencing. Our study provided important information on the potential for using metagenomics as a tool for assessment of public health risk in natural environments. 
    more » « less
  4. Elkins, Christopher A. (Ed.)
    ABSTRACT Low- and middle-income countries (LMICs) bear the largest mortality burden of antibiotic-resistant infections. Small-scale animal production and free-roaming domestic animals are common in many LMICs, yet data on zoonotic exchange of gut bacteria and antibiotic resistance genes (ARGs) in low-income communities are sparse. Differences between rural and urban communities with regard to population density, antibiotic use, and cohabitation with animals likely influence the frequency of transmission of gut bacterial communities and ARGs between humans and animals. Here, we determined the similarity in gut microbiomes, using 16S rRNA gene amplicon sequencing, and resistomes, using long-read metagenomics, between humans, chickens, and goats in a rural community compared to an urban community in Bangladesh. Gut microbiomes were more similar between humans and chickens in the rural (where cohabitation is more common) than the urban community, but there was no difference for humans and goats in the rural versus the urban community. Human and goat resistomes were more similar in the urban community, and ARG abundance was higher in urban animals than rural animals. We identified substantial overlap of ARG alleles in humans and animals in both settings. Humans and chickens had more overlapping ARG alleles than humans and goats. All fecal hosts from the urban community and rural humans carried ARGs on chromosomal contigs classified as potentially pathogenic bacteria, including Escherichia coli , Campylobacter jejuni , Clostridioides difficile , and Klebsiella pneumoniae . These findings provide insight into the breadth of ARGs circulating within human and animal populations in a rural compared to urban community in Bangladesh. IMPORTANCE While the development of antibiotic resistance in animal gut microbiomes and subsequent transmission to humans has been demonstrated in intensive farming environments and high-income countries, evidence of zoonotic exchange of antibiotic resistance in LMIC communities is lacking. This research provides genomic evidence of overlap of antibiotic resistance genes between humans and animals, especially in urban communities, and highlights chickens as important reservoirs of antibiotic resistance. Chicken and human gut microbiomes were more similar in rural Bangladesh, where cohabitation is more common. Incorporation of long-read metagenomics enabled characterization of bacterial hosts of resistance genes, which has not been possible in previous culture-independent studies using only short-read sequencing. These findings highlight the importance of developing strategies for combatting antibiotic resistance that account for chickens being reservoirs of ARGs in community environments, especially in urban areas. 
    more » « less
  5. Abstract Background Metagenomic data can be used to profile high-importance genes within microbiomes. However, current metagenomic workflows produce data that suffer from low sensitivity and an inability to accurately reconstruct partial or full genomes, particularly those in low abundance. These limitations preclude colocalization analysis, i.e., characterizing the genomic context of genes and functions within a metagenomic sample. Genomic context is especially crucial for functions associated with horizontal gene transfer (HGT) via mobile genetic elements (MGEs), for example antimicrobial resistance (AMR). To overcome this current limitation of metagenomics, we present a method for comprehensive and accurate reconstruction of antimicrobial resistance genes (ARGs) and MGEs from metagenomic DNA, termed t arget- e nriched l ong-read seq uencing (TELSeq). Results Using technical replicates of diverse sample types, we compared TELSeq performance to that of non-enriched PacBio and short-read Illumina sequencing. TELSeq achieved much higher ARG recovery (>1,000-fold) and sensitivity than the other methods across diverse metagenomes, revealing an extensive resistome profile comprising many low-abundance ARGs, including some with public health importance. Using the long reads generated by TELSeq, we identified numerous MGEs and cargo genes flanking the low-abundance ARGs, indicating that these ARGs could be transferred across bacterial taxa via HGT. Conclusions TELSeq can provide a nuanced view of the genomic context of microbial resistomes and thus has wide-ranging applications in public, animal, and human health, as well as environmental surveillance and monitoring of AMR. Thus, this technique represents a fundamental advancement for microbiome research and application. 
    more » « less