Flapping flight is a commonly used mechanism of micro aerial vehicles and insects alike. Dragonflies use their four-winged anatomy to navigate the environment, maneuver around obstacles, and perform other essential flight patterns. The flight performance and aerodynamics of intact flapping wings is well known; however, this study aims to clarify how wing damage affects the flight performance. First, high speed videos of the damaged wing flight, a takeoff performed by a dragonfly, is captured, and subsequently digitally reconstructed to create a three-dimensional model. Second, using an immersed-boundary method (IBM) based incompressible Navier-Stokes direct numerical simulation (DNS) solver, we resolve the aerodynamic forces and wake topology of the dragonfly’s damaged wing flapping flight in high detail. We found that spanwise damage doesn’t cause any detriment to the force capabilities of the damaged wing which is due to increased pitch angles of the damaged wing. As a consequence, fliers with spanwise damaged and intact wings may be able to utilize similar strategies to achieve takeoffs. The wake topology of the wing damaged flight is also examined. This work serves as a baseline for studying the effect of wing damage for flapping flight and could provide useful insights to micro-aerial vehicle (MAV) designers as some degree of wing damage may be an inevitable occurrence for winged fliers.
more »
« less
Computational study on the gliding flight of a damselfly
Gliding flight is commonly accepted to be a valuable energy-saving mechanism used by natural flyers. In this work, In this work, the gliding flight of a damselfly undergoing was filmed in a large flight enclosure by using three orthogonally arranged and synchronized highspeed cameras. Using a 3D subdivision surface reconstruction methodology, the damselfly’s wing deformation and kinematics were modeled and reconstructed from the high-speed videos. An immersed-boundary-method-based Navier-Strokes equation solver is then employed to compute the aerodynamic performance of damselfly in gliding flight. A comparison between the aerodynamics of solitary wings and the fore-hind wing system suggests that wing-wing interactions can reduce the drag of the forewing and improve its gliding performance. Three Euler angles are employed to define the orientation of the wings in gliding. Parametric studies on these angles are implemented to obtain the optimal orientation of the wings in gliding flight. It is found that the wings with the orientation directly obtained from the experiments achieve the optimal gliding performance among all cases. In addition, vortex structures and surface pressure are also compared and analyzed to better understand the gliding aerodynamics, which can be used for the flight control of flapping wing micro air vehicles.
more »
« less
- Award ID(s):
- 1931929
- PAR ID:
- 10473212
- Publisher / Repository:
- American Institute of Aeronautics and Astronautics
- Date Published:
- ISBN:
- 978-1-62410-631-6
- Format(s):
- Medium: X
- Location:
- San Diego, CA & Virtual
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Flapping wing deformation influences the aerodynamics of insect flight. This deformation is dictated by the dynamical properties of the insect wing, particularly its vibration spectra and mode shapes. However, researchers have not yet developed artificial insect wings with vibration spectra and mode shapes that are identical to their biological counterparts. The goal of the present work is to develop artificial insect wings that are both isospectral and isomodal with respect to real insect wings. To do so, we characterized hawkmoth Manduca sexta wings using experimental modal analyses. From these results, we created artificial wings using additive manufacturing and heat molding. Between artificial and real wings, the first two natural frequencies differ by 7% and 16% respectively, with differences of 16% and 131% in gains evaluated at those natural frequencies. Vibration modes are similar as well. This work provides a foundation for more advanced wing design moving forward.more » « less
-
Abstract One of the most ancient and evolutionarily conserved behaviors in the animal kingdom involves utilizing wind-borne odor plumes to track essential elements such as food, mates, and predators. Insects, particularly flies, demonstrate a remarkable proficiency in this behavior, efficiently processing complex odor information encompassing concentrations, direction, and speed through their olfactory system, thereby facilitating effective odor-guided navigation. Recent years have witnessed substantial research explaining the impact of wing flexibility and kinematics on the aerodynamics and flow field physics governing the flight of insects. However, the relationship between the flow field and olfactory functions remains largely unexplored, presenting an attractive frontier with numerous intriguing questions. One such question pertains to whether flies intentionally manipulate the flow field around their antennae using their wing structure and kinematics to augment their olfactory capabilities. To address this question, we first reconstructed the wing kinematics based on high-speed video recordings of wing surface deformation. Subsequently, we simulated the unsteady flow field and odorant transport during the forward flight of blue bottle flies (Calliphora vomitoria) by solving the Navier–Stokes equations and odorant advection–diffusion equations using an in-house computational fluid dynamics solver. Our simulation results demonstrated that flexible wings generated greater cycle-averaged aerodynamic forces compared to purely rigid flapping wings, underscoring the aerodynamic advantages of wing flexibility. Additionally, flexible wings produced 25% greater odor intensity, enhancing the insect’s ability to detect and interpret olfactory cues. This study not only advances our understanding of the intricate interplay between wing motion, aerodynamics, and olfactory capabilities in flying insects but also raises intriguing questions about the intentional modulation of flow fields for sensory purposes in other behaviors.more » « less
-
Abstract Insect wings are heterogeneous structures, with flexural rigidity varying one to two orders of magnitude over the wing surface. This heterogeneity influences the deformation the flapping wing experiences during flight. However, it is not well understood how this flexural rigidity gradient affects wing performance. Here, we develop a simplified 2D model of a flapping wing as a pitching, plunging airfoil using the assumed mode method and unsteady vortex lattice method to model the structural and fluid dynamics, respectively. We conduct parameter studies to explore how variable flexural rigidity affects mean lift production, power consumption and the forces required to flap the wing. We find that there is an optimal flexural rigidity distribution that maximizes lift production; this distribution generally corresponds to a 3:1 ratio between the wing’s flapping and natural frequencies, though the ratio is sensitive to flapping kinematics. For hovering flight, the optimized flexible wing produces 20% more lift and requires 15% less power compared to a rigid wing but needs 20% higher forces to flap. Even when flapping kinematics deviate from those observed during hover, the flexible wing outperforms the rigid wing in terms of aerodynamic force generation and power across a wide range of flexural rigidity gradients. Peak force requirements and power consumption are inversely proportional with respect to flexural rigidity gradient, which may present a trade-off between insect muscle size and energy storage requirements. The model developed in this work can be used to efficiently investigate other spatially variant morphological or material wing features moving forward.more » « less
-
Birds perform astounding aerial maneuvers by actuating their shoulder, elbow, and wrist joints to morph their wing shape. This maneuverability is desirable for similar-sized uncrewed aerial vehicles (UAVs) and can be analyzed through the lens of dynamic flight stability. Quantifying avian dynamic stability is challenging as it is dictated by aerodynamics and inertia, which must both account for birds’ complex and variable morphology. To date, avian dynamic stability across flight conditions remains largely unknown. Here, we fill this gap by quantifying how a gull can use wing morphing to adjust its longitudinal dynamic response. We found that it was necessary to adjust the shoulder angle to achieve trimmed flight and that most trimmed configurations were longitudinally stable except for configurations with high wrist angles. Our results showed that as flight speed increases, the gull could fold or sweep its wings backward to trim. Further, a trimmed gull can use its wing joints to control the frequencies and damping ratios of the longitudinal oscillatory modes. We found a more damped phugoid mode than similar-sized UAVs, possibly reducing speed sensitivity to perturbations, such as gusts. Although most configurations had controllable short-period flying qualities, the heavily damped phugoid mode indicates a sluggish response to control inputs, which may be overcome while maneuvering by morphing into an unstable flight configuration. Our study shows that gulls use their shoulder, wrist, and elbow joints to negotiate trade-offs in stability and control and points the way forward for designing UAVs with avian-like maneuverability.more » « less
An official website of the United States government

