skip to main content

Title: Wake Interactions Between Groups of Undulating Foils
The canonical motion of foils has been studied extensively in many applications, including energy harvesting. The advantage of undulating foils is often realized in their ability to positively interfere with neighboring foils. However, more research is needed in understanding different arrangements of undulating foils, along with the fluid dynamics interactions involved in enhancing the performance of the foils for this advantage to properly scale to a large number of foils. This work utilizes the concept of subgroups within a school, borrowed from biological studies of fish schools, along with an immersed boundary methodbased computational fluids solver to investigate how these larger groups of undulating foils interact. A parametric study is completed around the spacing of the back subgroup, and the vortex formation and wake structures are analyzed, revealing that the back subgroup gains efficiency via interactions with the wake of the front subgroup. The present study gives insight into how groups of undulating foils interact and uncovers mechanisms that enhance performance through their interaction.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Institute of Aeronautics and Astronautics
Date Published:
Medium: X
National Harbor, MD & Online
Sponsoring Org:
National Science Foundation
More Like this
  1. In this study, we numerically investigate the effects of the tail-beat phase differences between the trailing fish and its neighboring fish on the hydrodynamic performance and wake dynamics in a two-dimensional high-density school. Foils undulating with a wavy-like motion are employed to mimic swimming fish. The phase difference varies from 0° to 360°. A sharp-interface immersed boundary method is used to simulate flows over the fish-like bodies and provide quantitative analysis of the hydrodynamic performance and wakes of the school. It is found that the highest net thrust and swimming efficiency can be reached at the same time in the fish school with a phase difference of 180°. In particular, when the phase difference is 90°, the trailing fish achieves the highest efficiency, 58% enhancement compared with a single fish, while it has the highest thrust production, increased by 108% over a single fish, at a phase difference of 0°. The performance and flow visualization results suggest that the phase of the trailing fish in the dense school can be controlled to improve thrust and propulsive efficiency, and these improvements occur through the hydrodynamic interactions with the vortices shed by the neighboring fish and the channel formed by the side fish. In addition, the investigation of the phase difference effects on the wake dynamics of schools performed in this work represents the first study in which the wake patterns for systems consisting of multiple undulating bodies are categorized. In particular, a reversed Bénard–von Kármán vortex wake is generated by the trailing fish in the school with a phase difference of 90°, while a Bénard–von Kármán vortex wake is produced when the phase difference is 0°. Results have revealed that the wake patterns are critical to predicting the hydrodynamic performance of a fish school and are highly dependent on the phase difference.

    more » « less
  2. Oscillating foil turbines can be utilized to extract hydrokinetic energy from tidal or river flows. When foils are placed in arrays, the reduced velocity between foils and the unsteady disturbances associated with the leading foil motion both affect the performance of downstream foils. To compare the performance between foils, a wide range of kinematics is numerically explored in a two-foil tandem configuration with matching strokes, but varying the inter-foil phase angle and spacing. The effects of the wake on the trailing foil performance are quantified by evaluating the difference between the normalized power extracted by each foil. The difference in normalized power extraction is a function of the wake phase parameter, Φ, and ranges from -65% to +6%, depending on the kinematic regime. It is also determined that the difference in normalized power is dominated by the pressure contribution from the heave stroke, whereas the viscous components are negligible. In general, these differences illustrate the unsteady effects within the wake of the first foil, and the various interaction modes of the downstream foil. These trends can be used to estimate power in other array configurations and provide a more robust model for wake-foil interactions for energy harvesting. 
    more » « less
  3. A machine learning model is developed to establish wake patterns behind oscillating foils for energy harvesting. The role of the wake structure is particularly important for array deployments of oscillating foils since the unsteady wake highly influences the performance of downstream foils. This work explores 46 oscillating foil kinematics, with the goal of parameterizing the wake based on the input kinematic variables and grouping vortex wakes through image analysis of vorticity fields. A combination of a convolutional neural network with long short-term memory units is developed to classify the wakes into three classes. To fully verify the physical wake differences among foil kinematics, a convolutional autoencoder combined with [Formula: see text]-means++ clustering is used to reveal four wake patterns via an unsupervised method. Future work can use these patterns to predict the performance of foils placed in the wake and build optimal foil arrangements for tidal energy harvesting.

    more » « less
  4. Flying snakes are the only snakes on Earth capable of aerial gliding, taking advantage of fluid dynamic principles to leap from point to point among the trees. During their gliding, the locomotion of aerial undulation is observed. We hypothesize that this locomotion and its associated unsteady vortex dynamics are critical to their aerodynamic performance. However, there is a lack of detailed three-dimensional flow field information around the snake body in gliding due to the difficulties in experimental flow visualizations of live animals. In this study, a computation fluid dynamics (CFD) study has been conducted to study the fluid dynamics of a snake-like gliding. A mathematical equation describing the horizontal undulation motion was applied for constructing snake-like 3D computational models and a series of flow simulations were conducted. An immersed-boundary-method (IBM)-based direct numerical simulation (DNS) flow solver along with adaptive mesh refinement (AMR) was used in the simulation. Specifically, different head positions, corresponding to different horizontal wave shapes and their effect on aerodynamic performance, flow field and wake structures behind the body will be studied. In addition, the dynamic undulating motion is introduced in the model and a CFD simulation is also conducted. Results from this study are expected to bring a step stone to understanding snake-inspired locomotion. 
    more » « less
  5. In this work, direct numerical simulation (DNS) is used to investigate how airfoil shape affects wake structure and performance during a pitching-heaving motion. First, a classshape transformation (CST) method is used to generate airfoil shapes. CST coefficients are then varied in a parametric study to create geometries that are simulated in a pitching and heaving motion via an immersed boundary method-based numerical solver. The results show that most coefficients have little effect on the propulsive efficiency, but the second coefficient does have a very large effect. Looking at the CST basis functions shows that the effect of this coefficient is concentrated near the 25% mark of the foils chord length. By observing the thrust force and hydrodynamic power through a period of motion it is shown that the effect of the foil shape change is realized near the middle of each flapping motion. Through further inspection of the wake structures, we conclude that this is due to the leading-edge vortex attaching better to the foil shapes with a larger thickness around 25% of the chord length. This is verified by the pressure contours, which show a lower pressure along the leading edge of the better performing foils. The more favorable pressure gradient generated allows for higher efficiency motion. 
    more » « less