skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Role of Frequency and Impedance Contrasts in Bandgap Closing and Formation Patterns of Axially-Vibrating Phononic Crystals
Bandgaps, or frequency ranges of forbidden wave propagation, are a hallmark of phononic crystals (PnCs). Unlike their lattice counterparts, PnCs taking the form of continuous structures exhibit an infinite number of bandgaps of varying location, bandwidth, and distribution along the frequency spectrum. While these bandgaps are commonly predicted from benchmark tools such as the Bloch-wave theory, the conditions that dictate the patterns associated with bandgap symmetry, attenuation, or even closing in multi-bandgap PnCs remain an enigma. In this work, we establish these patterns in one-dimensional rods undergoing longitudinal motion via a canonical transfer-matrix-based approach. In doing so, we connect the conditions governing bandgap formation and closing to their physical origins in the context of the Bragg condition (for infinite media) and natural resonances (for finite counterparts). The developed framework uniquely characterizes individual bandgaps within a larger dispersion spectrum regardless of their parity (i.e., odd versus even bandgaps) or location (low versus high-frequency), by exploiting dimensionless constants of the PnC unit cell which quantify the different contrasts between its constitutive layers. These developments are detailed for a bi-layered PnC and then generalized for a PnC of any number of layers by increasing the model complexity. We envision this mathematical development to be a future standard for the realization of hierarchically structured PnCs with prescribed and finely tailored bandgap profiles.  more » « less
Award ID(s):
1847254
PAR ID:
10473234
Author(s) / Creator(s):
;
Publisher / Repository:
ASME
Date Published:
Journal Name:
Journal of Applied Mechanics
Volume:
91
Issue:
3
ISSN:
0021-8936
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A locally resonant meta-surface for preferential excitation of a guided mode in a hollow pipe can improve ultrasonic guided wave inspection of pipelines. The proposed meta-surface comprises a periodic arrangement of bonded prismatic rod-like resonators in the circumferential and axial directions of the pipe. We demonstrate the presence of bandgaps for the low-frequency axisymmetric longitudinal modes L(0,1) and L(0,2) and the torsional mode T(0,1). The generated bandgaps can be used to filter the higher harmonics associated with the system nonlinearity to improve nonlinear ultrasonic measurements on pipes. These bandgaps exist even for the non-axisymmetric flexural modes but with their hybridized dispersion curves exhibiting mode-coupling for higher circumferential orders. Moreover, a “partial” bandgap is obtained where preferential transmission of the L(0,2) mode over L(0,1) is possible. We discuss the potential advantages of this partial bandgap to improve pipeline inspections using the L(0,2) mode. Time-domain finite element analyses are used to validate the presence of these bandgaps under radial, circumferential, and axial excitation that mimics the excitation using a ring of piezoelectric transducers. Finally, we discuss the influence of resonator spacing, filling fraction, and the number of resonator rings on the bandgaps for an informed meta-surface design. 
    more » « less
  2. Locally resonant elastodynamic metasurfaces for suppressing surface waves have gained popularity in recent years, especially because of their potential in low-frequency applications such as seismic barriers. Their design strategy typically involves tailoring geometrical features of local resonators to attain a desired frequency bandgap through extensive dispersion analyses. In this paper, a systematic design methodology is presented to conceive these local resonators using topology optimization, where frequency bandgaps develop by matching multiple antiresonances with predefined target frequencies. The design approach modifies an individual resonator's response to unidirectional harmonic excitations in the in-plane and out-of-plane directions, mimicking the elliptical motion of surface waves. Once an arrangement of optimized resonators composes a locally resonant metasurface, frequency bandgaps appear around the designed antiresonance frequencies. Numerical investigations analyze three case studies, showing that longitudinal-like and flexural-like antiresonances lead to nonoverlapping bandgaps unless both antiresonance modes are combined to generate a single and wider bandgap. Experimental data demonstrate good agreement with the numerical results, validating the proposed design methodology as an effective tool to realize locally resonant metasurfaces by matching multiple antiresonances such that bandgaps generated as a result of in-plane and out-of-plane surface wave motion combine into wider bandgaps. 
    more » « less
  3. Abstract Metal halide perovskite nanocrystals (PNCs) have recently garnered tremendous research interest due to their unique optoelectronic properties and promising applications in photovoltaics and optoelectronics. Metal halide PNCs can be combined with polymers to create nanocomposites that carry an array of advantageous characteristics. The polymer matrix can bestow stability, stretchability, and solution‐processability while the PNCs maintain their size‐, shape‐ and composition‐dependent optoelectronic properties. As such, these nanocomposites possess great promise for next‐generation displays, lighting, sensing, biomedical technologies, and energy conversion. The recent advances in metal halide PNC/polymer nanocomposites are summarized here. First, a variety of synthetic strategies for crafting PNC/polymer nanocomposites are discussed. Second, their array of intriguing properties is examined. Third, the broad range of applications of PNC/polymer nanocomposites is highlighted, including light‐emitting diodes (LEDs), lasers, and scintillators. Finally, an outlook on future research directions and challenges in this rapidly evolving field are presented. 
    more » « less
  4. Abstract As a class of semiconductor nanocrystals that exhibit high photoluminescence quantum yield (PLQY) at tunable wavelengths, perovskite nanocrystals (PNCs) are attractive candidates for optoelectronic and light‐emitting devices. However, attempts to optimize PNC integration into such applications suffer from PNC instability and loss of PL over time. Here, we describe the impact of organic and polymeric N‐oxides when used in conjunction with PNCs, whereby a significant increase in PNC quantum yield is observed in solution, and stable PL emission is obtained in polymeric nanocomposites. Specifically, when using aliphatic N‐oxides in ligand exchange with CsPbBr3PNCs in solution, a substantial boost in PNC brightness is observed (~40% or more PLQY increase), followed by an alteration of the perovskite chemistry. When N‐oxide substituents are positioned pendent to a poly(n‐butyl methacrylate) backbone, the optically clear flexible nanocomposite films obtained have bright PL emission and maintain optical clarity for months. X‐ray diffraction is useful for characterizing the PNC crystalline structure following exposure to aliphatic N‐oxides, while electron microscopy (EM) and small‐angle X‐ray scattering (SAXS) measurements of the PNC‐polymer nanocomposites show this polymeric N‐oxide platform to cleanly disperse PNCs in flexible polymer films. 
    more » « less
  5. Abstract Recently, additive manufacturing (AM) fabrications are commonly applied to produce acoustic metamaterials or phononic crystals (PnCs) as tools for complex geometrical designs. However, the material properties of those additive manufactured materials are less involved in the core portion of those PnC designs. Here we report a purely materials-driven, temperature switchable PnC in which Bragg gaps appear or vanish as the lattice medium toggles between liquid water and solid ice. Six widely used AM polymers were acoustically characterized, where stereolithography (SLA) resins showed an impedance mismatch of ≈50% with water but <1% with ice, whereas inkjet agar gel exhibited the opposite trend. A 10 × 10 SLA resin PnC therefore displayed >20 dB on/off contrast at 145 kHz and around 300 kHz when cycled across 0 °C, confirmed experimentally and with plane wave and simulation models. Unlike previous thermally tuned PnCs that depend on volumetric swelling or liquid metal infiltration, the present approach preserves geometry, requires no external actuators and operates with sub 1 °C stability. This simple, robust strategy lays the foundation for band pass filters, steerable lenses and non-reciprocal acoustic circuits that can be frozen or thawed on demand. 
    more » « less