We consider the KZ differential equations over C in the case, when the hypergeometric solutions are one-dimensional integrals. We also consider the same differential equations over a finite field F_p. We study the polynomial solutions of these differential equations over F_p, constructed in a previous work joint with V. Schechtman and called the F_p-hypergeometric solutions. The dimension of the space of F_p-hypergeometric solutions depends on the prime number p. We say that the KZ equations have ample reduction for a prime p, if the dimension of the space of F_p-hypergeometric solutions is maximal possible, that is, equal to the dimension of the space of solutions of the corresponding KZ equations over C. Under the assumption of ample reduction, we prove a determinant formula for the matrix of coordinates of basis F_p-hypergeometric solutions. The formula is analogous to the corresponding formula for the determinant of the matrix of coordinates of basis complex hypergeometric solutions, in which binomials (z_i−z_j)^{M_i+M_j} are replaced with (z_i−z_j)^{Mi+Mj−p} and the Euler gamma function Γ(x) is replaced with a suitable F_p-analog defined on F_p
more »
« less
On an effective equation of the reduced Hartree-Fock theory
We show that there is a one-to-one correspondence between solutions to the Poisson-landscape equations and the reduced Hartree-Fock equations in the semi-classical limit at low temperature. Moreover, we prove that the difference between the two corresponding solutions is small by providing explicit estimates.
more »
« less
- Award ID(s):
- 1839077
- PAR ID:
- 10473319
- Publisher / Repository:
- De Gruyter
- Date Published:
- Journal Name:
- Advanced Nonlinear Studies
- Volume:
- 23
- Issue:
- 1
- ISSN:
- 2169-0375
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Karunakaran, S.; & Higgins, A. (Ed.)Systems of equations is a core topic in linear algebra courses. Solving systems with no or infinitely many solutions tends to be less intuitive for students. In this study, we examined two students’ reasoning about the relationship between the structure of a system of linear equations and its solution set, particularly when creating systems with a certain number of equations and unknowns. Using data from a paired teaching experiment, we found that both students favored the notion of parallel planes, both geometrically and numerically, in the case of a system having no solution or infinitely many solutions. We also found that algebraic or numerical approaches were used as the main way of developing systems with a unique solution, especially in systems with more than two equations and two unknowns. In particular, one student gravitated toward geometric approaches and the other toward algebraic and numerical approaches.more » « less
-
Karunakaran, S. S.; Higgins, A. (Ed.)Systems of equations is a core topic in linear algebra courses. Solving systems with no or infinitely many solutions tends to be less intuitive for students. In this study, we examined two students’ reasoning about the relationship between the structure of a system of linear equations and its solution set, particularly when creating systems with a certain number of equations and unknowns. Using data from a paired teaching experiment, we found that both students favored the notion of parallel planes, both geometrically and numerically, in the case of a system having no solution or infinitely many solutions. We also found that algebraic or numerical approaches were used as the main way of developing systems with a unique solution, especially in systems with more than two equations and two unknowns. In particular, one student gravitated toward geometric approaches and the other toward algebraic and numerical approaches.more » « less
-
S. S. Karunakaran; A. Higgins (Ed.)Systems of equations is a core topic in linear algebra courses. Solving systems with no or infinitely many solutions tends to be less intuitive for students. In this study, we examined two students’ reasoning about the relationship between the structure of a system of linear equations and its solution set, particularly when creating systems with a certain number of equations and unknowns. Using data from a paired teaching experiment, we found that both students favored the notion of parallel planes, both geometrically and numerically, in the case of a system having no solution or infinitely many solutions. We also found that algebraic or numerical approaches were used as the main way of developing systems with a unique solution, especially in systems with more than two equations and two unknowns. In particular, one student gravitated toward geometric approaches and the other toward algebraic and numerical approaches.more » « less
-
Abstract Chemotaxis phenomena govern the directed movement of microorganisms in response to chemical stimuli. In this paper, we investigate two Keller–Segel systems of reaction–advection–diffusion equations modeling chemotaxis on thin networks. The distinction between two systems is driven by the rate of diffusion of the chemo-attractant. The intermediate rate of diffusion is modeled by a coupled pair of parabolic equations, while the rapid rate is described by a parabolic equation coupled with an elliptic one. Assuming the polynomial rate of growth of the chemotaxis sensitivity coefficient, we prove local well-posedness of both systems on compact metric graphs, and, in particular, prove existence of unique classical solutions. This is achieved by constructing sufficiently regular mild solutions via analytic semigroup methods and combinatorial description of the heat kernel on metric graphs. The regularity of mild solutions is shown by applying abstract semigroup results to semi-linear parabolic equations on compact graphs. In addition, for logistic-type Keller–Segel systems we prove global well-posedness and, in some special cases, global uniform boundedness of solutions.more » « less
An official website of the United States government

