skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Well-posedness of Keller–Segel systems on compact metric graphs
Abstract Chemotaxis phenomena govern the directed movement of microorganisms in response to chemical stimuli. In this paper, we investigate two Keller–Segel systems of reaction–advection–diffusion equations modeling chemotaxis on thin networks. The distinction between two systems is driven by the rate of diffusion of the chemo-attractant. The intermediate rate of diffusion is modeled by a coupled pair of parabolic equations, while the rapid rate is described by a parabolic equation coupled with an elliptic one. Assuming the polynomial rate of growth of the chemotaxis sensitivity coefficient, we prove local well-posedness of both systems on compact metric graphs, and, in particular, prove existence of unique classical solutions. This is achieved by constructing sufficiently regular mild solutions via analytic semigroup methods and combinatorial description of the heat kernel on metric graphs. The regularity of mild solutions is shown by applying abstract semigroup results to semi-linear parabolic equations on compact graphs. In addition, for logistic-type Keller–Segel systems we prove global well-posedness and, in some special cases, global uniform boundedness of solutions.  more » « less
Award ID(s):
2418900
PAR ID:
10560232
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Journal of Evolution Equations
Volume:
25
Issue:
1
ISSN:
1424-3199
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Chemotaxis describes the movement of an organism, such as single or multi-cellular organisms and bacteria, in response to a chemical stimulus. Two widely used models to describe the phenomenon are the celebrated Keller–Segel equation and a chemotaxis kinetic equation. These two equations describe the organism’s movement at the macro- and mesoscopic level, respectively, and are asymptotically equivalent in the parabolic regime. The way in which the organism responds to a chemical stimulus is embedded in the diffusion/advection coefficients of the Keller–Segel equation or the turning kernel of the chemotaxis kinetic equation. Experiments are conducted to measure the time dynamics of the organisms’ population level movement when reacting to certain stimulation. From this, one infers the chemotaxis response, which constitutes an inverse problem. In this paper, we discuss the relation between both the macro- and mesoscopic inverse problems, each of which is associated with two different forward models. The discussion is presented in the Bayesian framework, where the posterior distribution of the turning kernel of the organism population is sought. We prove the asymptotic equivalence of the two posterior distributions. 
    more » « less
  2. We study two types of divergence-free fluid flows on unbounded domains in two and three dimensions—hyperbolic and shear flows—and their influence on chemotaxis and combustion. We show that fast spreading by these flows, when they are strong enough, can suppress growth of solutions to PDE modeling these phenomena. This includes prevention of singularity formation and global regularity of solutions to advective Patlak-Keller-Segel equations on R 2 \mathbb {R}^2 and R 3 \mathbb {R}^3 , confirming numerical observations by Khan, Johnson, Cartee, and Yao [Involve 9 (2016), pp. 119–131], as well as quenching in advection-reaction-diffusion equations. 
    more » « less
  3. This paper concerns asymptotic stability, instability, and bifurcation of constant steady state solutions of the parabolic-parabolic and parabolic-elliptic chemotaxis models on metric graphs. We determine a threshold value $$\chi^*>0$$ of the chemotaxis sensitivity parameter that separates the regimes of local asymptotic stability and instability, and, in addition, determine the parameter intervals that facilitate global asymptotic convergence of solutions with positive initial data to constant steady states. Moreover, we provide a sequence of bifurcation points for the chemotaxis sensitivity parameter that yields non-constant steady state solutions. In particular, we show that the first bifurcation point coincides with threshold value $$\chi^*$$ for a generic compact metric graph. Finally, we supply numerical computation of bifurcation points for several graphs. 
    more » « less
  4. We consider the three-dimensional parabolic-parabolic Patlak-Keller-Segel equations (PKS) subject to ambient flows. Without the ambient fluid flow, the equation is super-critical in three-dimension and has finite-time blow-up solutions with arbitrarily small $L^1$-mass. In this study, we show that a family of time-dependent alternating shear flows, inspired by the clever ideas of Tarek Elgindi [39], can suppress the chemotactic blow-up in these systems. 
    more » « less
  5. D. M. Kilgour et al. (Ed.)
    We consider a Keller-Segel type chemotaxis model with logarithmic sensitivity and density-dependent production/consumption rate. It is a 2 × 2 reaction-diffusion system describing the interaction of cells and a chemical signal. We study Cauchy problem for the original system and its transformed system, which is one of hyperbolic-parabolic conservation laws. In both cases of diffusive and non-diffusive chemical,we obtain optimal L^2 time decay rates for the solution. Our results improve those in Li et al. (Nonlinearity 28:2181-2210, 2015 [5]), Martinez et al. (Indiana Univ Math J 67:1383-1424, 2018 [7]). 
    more » « less