skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Real-Time Walk Detection for Robotic Hip Exoskeleton Applications
Detection of the user’s walking is a critical part of exoskeleton technology for the full automation of smooth and seamless assistance during movement transitions. Researchers have taken several approaches in developing a walk detection system by using different kinds of sensors; however, only a few solutions currently exist which can detect these transitions using only the sensors embedded on a robotic hip exoskeleton (i.e., hip encoders and a trunk IMU), which is a critical consideration for implementing these systems in-the-loop of a hip exoskeleton controller. As a solution, we explored and developed two walk detection models that implemented a finite state machine as the models switched between walking and standing states using two transition conditions: stand-to-walk and walk-to-stand. One of our models dynamically detected the user’s gait cycle using two hip encoders and an IMU; the other model only used the two hip encoders. Our models were developed using a publicly available dataset and were validated online using a wearable sensor suite that contains sensors commonly embedded on robotic hip exoskeletons. The two models were then compared with a foot contact estimation method, which served as a baseline for evaluating our models. The results of our online experiments validated the performance of our models, resulting in 274 ms and 507 ms delay time when using the HIP+IMU and HIP ONLY model, respectively. Therefore, the walk detection models established in our study achieve reliable performance under multiple locomotive contexts without the need for manual tuning or sensors additional to those commonly implemented on robotic hip exoskeletons.  more » « less
Award ID(s):
1830215
PAR ID:
10473365
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IEEE 2022 International Symposium on Medical Robotics (ISMR)
Date Published:
ISBN:
978-1-6654-6928-9
Page Range / eLocation ID:
1 to 5
Format(s):
Medium: X
Location:
Atlanta, GA
Sponsoring Org:
National Science Foundation
More Like this
  1. Robotic exoskeletons have the capability to improve community ambulation in aging individuals. These exoskeleton controllers utilize different environmental information such as walking speeds and slope inclines to provide corresponding assistance. Several numerical approaches for estimating this environmental information have been implemented; however, they tend to be limited during dynamic changes. A possible solution is a machine learning model utilizing the user's electromyography (EMG) signals along with mechanical sensor data. We developed a neural network-based walking speed and slope estimator for a powered hip exoskeleton and explored the EMG signal contributions in both static and dynamic settings while wearing the device. We also analyzed the performance of different EMG electrode placements. The resulting machine learning model achieved error rates below 0.08 m/s RMSE and 1.3 RMSE. Our study findings from four able-bodied and two elderly subjects indicate that EMG can improve the performance by reducing the error rate by 14.8% compared to the model using only mechanical sensors. Additionally, results show that using EMG electrode configuration within the exoskeleton interface region is sufficient for the EMG model performance. 
    more » « less
  2. Autonomous lower-limb exoskeletons must modulate assistance based on locomotion mode (e.g., ramp or stair ascent) to adapt to the corresponding changes in human biological joint dynamics. However, current mode classification strategies for exoskeletons often require user-specific tuning, have a slow update rate, and rely on additional sensors outside of the exoskeleton sensor suite. In this study, we introduce a deep convolutional neural network-based locomotion mode classifier for hip exoskeleton applications using an open-source gait biomechanics dataset with various wearable sensors. Our approach removed the limitations of previous systems as it is 1) subject-independent (i.e., no user-specific data), 2) capable of continuously classifying for smooth and seamless mode transitions, and 3) only utilizes minimal wearable sensors native to a conventional hip exoskeleton. We optimized our model, based on several important factors contributing to overall performance, such as transition label timing, model architecture, and sensor placement, which provides a holistic understanding of mode classifier design. Our optimized DL model showed a 3.13% classification error (steady-state: 0.80 ± 0.38% and transitional: 6.49 ± 1.42%), outperforming other machine learning-based benchmarks commonly practiced in the field (p<0.05). Furthermore, our multi-modal analysis indicated that our model can maintain high performance in different settings such as unseen slopes on stairs or ramps. Thus, our study presents a novel locomotion mode framework, capable of advancing robotic exoskeleton applications toward assisting community ambulation. 
    more » « less
  3. Robotic lower limb exoskeletons have been shown to successfully provide joint torques to assist human subjects during walking. Assisting the wearer during gait perturbations to prevent falls still poses a challenge due to specific requirements of the device, and complex bipedal dynamics of recovery. In this study, we present a hip exoskeleton device with pneumatically actuated abduction/adduction motion to provide hip torque for assisting with lateral balance. The device was designed to be wearable, allow integration with previously developed wearable gait perturbation detection system and knee exoskeleton, and produce fast actuation to provide assistive joint torque during gait perturbations. We present the results of the experimental benchtop tests of the device. The maximum torque output and rate of torque development were characterized using a load cell. The maximum angular displacement, with added weights to simulate the leg inertia, was recorded using an inertial measurement unit sensor. Lastly, a preliminary test on a human subject demonstrated that the device, when exerting instantaneous hip abduction torque during swing walking gait, can effectively modify foot placement in the lateral direction. This work contributes towards developing exoskeleton control strategies for assistance during gait perturbations to prevent falls. 
    more » « less
  4. Objective: Semi-active exoskeletons combining lightweight, low powered actuators and passive-elastic elements are a promising approach to portable robotic assistance during locomotion. Here, we introduce a novel semi-active hip exoskeleton concept and evaluate human walking performance across a range of parameters using a tethered robotic testbed. Methods : We emulated semi-active hip exoskeleton (exo) assistance by applying a virtual torsional spring with a fixed rotational stiffness and an equilibrium angle established in terminal swing phase (i.e., via pre-tension into stance). We performed a 2-D sweep of spring stiffness x equilibrium position parameters (30 combinations) across walking speed (1.0, 1.3, and 1.6 m/s) and measured metabolic rate to identify device parameters for optimal metabolic benefit. Results : At each speed, optimal exoskeleton spring settings provided a ∼10% metabolic benefit compared to zero-impedance (ZI). Higher walking speeds required higher exoskeleton stiffness and lower equilibrium angle for maximal metabolic benefit. Optimal parameters tuned to each individual (user-dependent) provided significantly larger metabolic benefit than the average-best settings (user-independent) at all speeds except the fastest (p = 0.021, p = 0.001, and p = 0.098 at 1.0, 1.3, and 1.6 m/s, respectively). We found significant correlation between changes in user's muscle activity and changes in metabolic rate due to exoskeleton assistance, especially for muscles crossing the hip joint. Conclusion : A semi-active hip exoskeleton with spring-parameters personalized to each user could provide metabolic benefit across functional walking speeds. Minimizing muscle activity local to the exoskeleton is a promising approach for tuning assistance on-line on a user-dependent basis. 
    more » « less
  5. Robotic lower-limb exoskeletons can augment human mobility, but current systems require extensive, context-specific considerations, limiting their real-world viability. Here, we present a unified exoskeleton control framework that autonomously adapts assistance on the basis of instantaneous user joint moment estimates from a temporal convolutional network (TCN). When deployed on our hip exoskeleton, the TCN achieved an average root mean square error of 0.142 newton-meters per kilogram across 35 ambulatory conditions without any user-specific calibration. Further, the unified controller significantly reduced user metabolic cost and lower-limb positive work during level-ground and incline walking compared with walking without wearing the exoskeleton. This advancement bridges the gap between in-lab exoskeleton technology and real-world human ambulation, making exoskeleton control technology viable for a broad community. 
    more » « less