skip to main content


Title: Polymer architecture dictates multiple relaxation processes in soft networks with two orthogonal dynamic bonds
Abstract

Materials with tunable modulus, viscosity, and complex viscoelastic spectra are crucial in applications such as self-healing, additive manufacturing, and energy damping. It is still challenging to predictively design polymer networks with hierarchical relaxation processes, as many competing factors affect dynamics. Here, networks with both pendant and telechelic architecture are synthesized with mixed orthogonal dynamic bonds to understand how the network connectivity and bond exchange mechanisms govern the overall relaxation spectrum. A hydrogen-bonding group and a vitrimeric dynamic crosslinker are combined into the same network, and multimodal relaxation is observed in both pendant and telechelic networks. This is in stark contrast to similar networks where two dynamic bonds share the same exchange mechanism. With the incorporation of orthogonal dynamic bonds, the mixed network also demonstrates excellent damping and improved mechanical properties. In addition, two relaxation processes arise when only hydrogen-bond exchange is present, and both modes are retained in the mixed dynamic networks. This work provides molecular insights for the predictive design of hierarchical dynamics in soft materials.

 
more » « less
NSF-PAR ID:
10473434
Author(s) / Creator(s):
; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Vinylogous urethane (VUO) based polymer networks are widely used as catalyst‐free vitrimers that show rapid covalent bond exchange at elevated temperatures. In solution, vinylogous ureas (VUN) undergo much faster bond exchange than VUOand are highly dynamic at room temperature. However, this difference in reactivity is not observed in their respective dynamic polymer networks, as VUOand VUNvitrimers prepared herein with very similar macromolecular architectures show comparable stress relaxation and creep behavior. However, by using mixtures of VUOand VUNlinkages within the same network, the dynamic reactions can be accelerated by an order of magnitude. The results can be rationalized by the effect of intermolecular hydrogen bonding, which is absent in VUOvitrimers, but is very pronounced for vinylogous urea moieties. At low concentrations of VUN, these hydrogen bonds act as catalysts for covalent bond exchange, while at high concentration, they provide a pervasive vinylogous urea ‐ urethane (VU) network of strong non‐covalent interactions, giving rise to phase separation and inhibiting polymer chain dynamics. This offers a straightforward design principle for dynamic polymer materials, showing at the same time the possible additive and synergistic effects of supramolecular and dynamic covalent polymer networks.

     
    more » « less
  2. Abstract

    Polymer networks containing dynamic covalent bonds do not exhibit traditional thermoset material properties. Such dynamic covalent networks have the ability to undergo stress relaxation processes associated with dynamic covalent bond exchange, imparting these materials with adaptive/responsive properties. Reported herein is an investigation on the effect that changing the amount of dynamic hindered alkylurea bonds has on the viscoelastic behavior of a series of poly(alkylurea‐co‐urethane) networks prepared by reacting a trifunctional isocyanate crosslinker with varying ratios of anN‐isopropyl amine endcapped poly(propylene glycol) and a poly(propylene glycol). Films that contain >50% dynamic alkylurea bonds (wrt. alkylurea + urethane bonds) exhibit facile reprocessability, while those films with <50% dynamic alkylurea bonds exhibit poor reprocessability under these same conditions. Analysis of the temperature‐dependent shear rheometry and uniaxial stress relaxation measurements demonstrates that the primary stress relaxation mode in these materials is linked to the dynamic bond exchange process. Interestingly, these films exhibit an increasingly rich viscoelastic spectrum with increasing fraction of non‐dynamic urethane bonds. In addition to the primary relaxation process an order‐of‐magnitude slower relaxation emerges, which is identified as being related to the relaxation of larger, permanently crosslinked polymeric clusters in an otherwise dynamic matrix.

     
    more » « less
  3. Dynamic networks containing multiple bond types within a continuous network grant engineers another design parameter – relative bond fraction – by which to tune storage and dissipation of mechanical energy. However, the mechanisms governing emergent properties are difficult to deduce experimentally. Therefore, we here employ a network model with prescribed fractions of dynamic and stable bonds to predict relaxation characteristics of hybrid networks. We find that during stress relaxation, predominantly dynamic networks can exhibit long-term moduli through conformationally inhibited relaxation of stable bonds due to exclusion interactions with neighboring chains. Meanwhile, predominantly stable networks exhibit minor relaxation through non-affine reconfiguration of dynamic bonds. Given this, we introduce a single fitting parameter, ξ , to Transient Network Theory via a coupled rule of mixture, that characterizes the extent of stable bond relaxation. Treating ξ as a fitting parameter, the coupled rule of mixture's predicted stress response not only agrees with the network model's, but also unveils likely micromechanical traits of gels hosting multiple bond dissociation timescales. 
    more » « less
  4. Abstract

    Dynamic liquid crystal elastomers (LCEs) are a class of polymer networks characterized by the inclusion of both liquid crystalline monomers and dynamic covalent bonds. The unique properties realized through the combination of these moieties has produced a plethora of stimuli‐responsive materials to address a range of emerging technologies. While previous works have studied the incorporation of different dynamic bonds in LCEs, few (if any) have studied the effect of the specific placement of the dynamic bonds within an LCE network. A series of dynamic LCE networks were synthesized using a generalizable approach that employs a tandem thiol‐ene/yne chemistry which allows the location of the dynamic disulfide bond to be varied while maintaining similar network characteristics. When probing these systems in the LC regime, the thermomechanical properties were found to be largely similar. It is not until elevated temperatures (160–180 °C) that differences in the relaxation activation energies of these systems begin to materialize based solely on differences in placement of the dynamic bond throughout the network. This work demonstrates that through intentional dynamic bond placement, stress relaxation times can be tuned without affecting the LCE character. This insight can help optimize future dynamic LCE designs and achieve shorter processing times.

     
    more » « less
  5. null (Ed.)
    A one pot synthesis is applied to control the chain structure and architecture of multiply dynamic polymers, enabling fine tuning of materials properties by choice of polymer chain length or crosslink density. Macromolecules containing both non-covalent linkers based on quadruple hydrogen-bonded 2-(((6-(3-(6-methyl-4-oxo-1,4-dihydropyrimidin-2-yl)ureido)hexyl)carbamoyl)oxy)ethyl methacrylate (UPyMA), and thermoresponsive dynamic covalent furan–maleimide based Diels–Alder linkers are explored. The primary polymer's architecture was controlled by reversible addition-fragmentation chain transfer (RAFT) polymerization, with the dynamic non-covalent (UPyMA) and dynamic covalent furfuryl methacrylate (FMA) units incorporated into the same backbone. The materials are crosslinked, taking advantage of the “click” chemistry properties of the furan–maleimide reaction. The polymer materials showed stimulus-responsive thermomechanical properties with a decrosslinking temperature increasing with the polymer's primary chain length and crosslink density. The polymers had good thermally promoted self-healing properties due to the dynamic covalent Diels–Alder bonds. Besides, the materials had excellent stress relaxation characteristics induced by the exchange of the hydrogen bonds in UPyMA units. 
    more » « less