skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: ScaleDB: A Scalable, Asynchronous In-Memory Database
ScaleDB is a serializable in-memory transactional database that achieves excellent scalability on multi-core machines by asynchronously updating range indexes. We find that asynchronous range index updates can significantly improve database scalability by applying updates in batches, reducing contention on critical sections. To avoid stale reads, ScaleDB uses small hash indexlets to hold delayed updates. We use in- dexlets to design ACC, an asynchronous concurrency control protocol providing serializability. With ACC, it is possible to delay range index updates without adverse performance effects on transaction execution in the common case. ACC delivers scalable serializable isolation for transactions, with high throughput and low abort rate. Evaluation on a dual- socket server with 36 cores shows that ScaleDB achieves 9.5× better query throughput than Peloton on the YCSB bench- mark and 1.8× better transaction throughput than Cicada on the TPC-C benchmark.  more » « less
Award ID(s):
2008667
PAR ID:
10473613
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
USENIX
Date Published:
Journal Name:
Proceedings of the 17th USENIX Symposium on Operating Systems Design and Implementation
ISBN:
978-1-939133-34-2
Format(s):
Medium: X
Location:
Boston, MA, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. ScaleDB is a serializable in-memory transactional database that achieves excellent scalability on multi-core machines by asynchronously updating range indexes. We find that asynchronous range index updates can significantly improve database scalability by applying updates in batches, reducing contention on critical sections. To avoid stale reads, ScaleDB uses small hash indexlets to hold delayed updates. We use indexlets to design ACC, an asynchronous concurrency control protocol providing serializability. With ACC, it is possible to delay range index updates without adverse performance effects on transaction execution in the common case. ACC delivers scalable serializable isolation for transactions, with high throughput and low abort rate. Evaluation on a dual-socket server with 36 cores shows that ScaleDB achieves 9.5× better query throughput than Peloton on the YCSB benchmark and 1.8× better transaction throughput than Cicada on the TPC-C benchmark. 
    more » « less
  2. Transaction isolation is conventionally achieved by restricting access to the physical items in a database. To maximize performance, isolation functionality is often packaged with recovery, I/O, and data access methods in a monolithic transactional storage manager. While this design has historically afforded high performance in online transaction processing systems, industry trends indicate a growing need for a new approach in which intertwined components of the transactional storage manager are disaggregated into modular services. This paper presents a new method to modularize the isolation component. Our work builds on predicate locking, an isolation mechanism that enables this modularization by locking logical rather than physical items in a database. Predicate locking is rarely used as the core isolation mechanism because of its high theoretical complexity and perceived overhead. However, we show that this overhead can be substantially reduced in practice by optimizing for common predicate structures. We present DIBS, a transaction scheduler that employs our predicate locking optimizations to guarantee isolation as a modular service. We evaluate the performance of DIBS as the sole isolation mechanism in a data processing system. In this setting, DIBS scales up to 10.5 million transactions per second on a TATP workload. We also explore how DIBS can be applied to existing database systems to increase transaction throughput. DIBS reduces per-transaction file system writes by 90% on TATP in SQLite, resulting in a 3X improvement in throughput. Finally, DIBS reduces row contention on YCSB in MySQL, providing serializable isolation with a 1.4X improvement in throughput. 
    more » « less
  3. Strictly serializable (linearizable) services appear to execute transactions (operations) sequentially, in an order consistent with real time. This restricts a transaction's (operation's) possible return values and in turn, simplifies application programming. In exchange, strictly serializable (linearizable) services perform worse than those with weaker consistency. But switching to such services can break applications. This work introduces two new consistency models to ease this trade-off: regular sequential serializability (RSS) and regular sequential consistency (RSC). They are just as strong for applications: we prove any application invariant that holds when using a strictly serializable (linearizable) service also holds when using an RSS (RSC) service. Yet they relax the constraints on services---they allow new, better-performing designs. To demonstrate this, we design, implement, and evaluate variants of two systems, Spanner and Gryff, relaxing their consistency to RSS and RSC, respectively. The new variants achieve better read-only transaction and read tail latency than their counterparts. 
    more » « less
  4. Public blockchains have spurred the growing popularity of decentralized transactions and smart contracts, especially on the financial market. However, public blockchains exhibit their limitations on the transaction throughput, storage availability, and compute capacity. To avoid transaction gridlock, public blockchains impose large fees and per-block resource limits, making it difficult to accommodate the ever-growing high transaction demand. Previous research endeavors to improve the scalability and performance of blockchain through various technologies, such as side-chaining, sharding, secured off-chain computation, communication network optimizations, and efficient consensus protocols. However, these approaches have not attained a widespread adoption due to their inability in delivering a cloud-like performance, in terms of the scalability in transaction throughput, storage, and compute capacity. In this work, we determine that the major obstacle to public blockchain scalability is their underlying unstructured P2P networks. We further show that a centralized network can support the deployment of decentralized smart contracts. We propose a novel approach for achieving scalable decentralization: instead of trying to make blockchain scalable, we deliver decentralization to already scalable cloud by using an Ethereum smart contract. We introduce Blockumulus, a framework that can deploy decentralized cloud smart contract environments using a novel technique called overlay consensus. Through experiments, we demonstrate that Blockumulus is scalable in all three dimensions: computation, data storage, and transaction throughput. Besides eliminating the current code execution and storage restrictions, Blockumulus delivers a transaction latency between 2 and 5 seconds under normal load. Moreover, the stress test of our prototype reveals the ability to execute 20,000 simultaneous transactions under 26 seconds, which is on par with the average throughput of worldwide credit card transactions. 
    more » « less
  5. Programming concurrent, distributed systems is hard---especially when these systems mutate shared, persistent state replicated at geographic scale. To enable high availability and scalability, a new class of weakly consistent data stores has become popular. However, some data needs strong consistency. To manipulate both weakly and strongly consistent data in a single transaction, we introduce a new abstraction: mixed-consistency transactions, embodied in a new embedded language, MixT. Programmers explicitly associate consistency models with remote storage sites; each atomic, isolated transaction can access a mixture of data with different consistency models. Compile-time information-flow checking, applied to consistency models, ensures that these models are mixed safely and enables the compiler to automatically partition transactions. New run-time mechanisms ensure that consistency models can also be mixed safely, even when the data used by a transaction resides on separate, mutually unaware stores. Performance measurements show that despite their stronger guarantees, mixed-consistency transactions retain much of the speed of weak consistency, significantly outperforming traditional serializable transactions. 
    more » « less