skip to main content


Title: Compact nonvolatile polarization switch using an asymmetric Sb 2 Se 3 -loaded silicon waveguide

We propose and simulate a compact (∼29.5 µm-long) nonvolatile polarization switch based on an asymmetric Sb2Se3-clad silicon photonic waveguide. The polarization state is switched between TM0and TE0mode by modifying the phase of nonvolatile Sb2Se3between amorphous and crystalline. When the Sb2Se3is amorphous, two-mode interference happens in the polarization-rotation section resulting in efficient TE0-TM0conversion. On the other hand, when the material is in the crystalline state, there is little polarization conversion because the interference between the two hybridized modes is significantly suppressed, and both TE0and TM0modes go through the device without any change. The designed polarization switch has a high polarization extinction ratio of > 20 dB and an ultra-low excess loss of < 0.22 dB in the wavelength range of 1520-1585 nm for both TE0and TM0modes.

 
more » « less
Award ID(s):
2003509
NSF-PAR ID:
10473676
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Optica
Date Published:
Journal Name:
Optics Express
Volume:
31
Issue:
6
ISSN:
1094-4087
Page Range / eLocation ID:
10684
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, we explore inverse designed reconfigurable digital metamaterial structures based on phase change material Sb2Se3for efficient and compact integrated nanophotonics. An exemplary design of a 1 × 2 optical switch consisting of a 3 µm x 3 µm pixelated domain is demonstrated. We show that: (i) direct optimization of a domain containing only Si and Sb2Se3pixels does not lead to a high extinction ratio between output ports in the amorphous state, which is owed to the small index contrast between Si and Sb2Se3in such a state. As a result, (ii) topology optimization, e.g., the addition of air pixels, is required to provide an initial asymmetry that aids the amorphous state's response. Furthermore, (iii) the combination of low loss and high refractive index change in Sb2Se3, which is unique among all phase change materials in the telecommunications 1550 nm band, translates into an excellent projected performance; the optimized device structure exhibits a low insertion loss (∼1.5 dB) and high extinction ratio (>18 dB) for both phase states.

     
    more » « less
  2. Abstract

    The generation of rapidly tunable optical vortex (OV) beams is one of the most demanding research areas of the present era as they possess orbital angular momentum (OAM) with additional degrees of freedom that can be exploited to enhance signal‐carrying capacity by using mode division multiplexing and information encoding in optical communication. Particularly, rapidly tunable OAM devices at a fixed wavelength in the telecom band stir extensive interest among researchers for both classical and quantum applications. This article demonstrates the realistic design of a Si‐integrated photonic device for rapidly tunable OAM wave generation at a 1550‐nm wavelength by using an ultra‐low‐loss phase change material (PCM) embedded with a Si‐ring resonator with angular gratings. Different OAM modes are achieved by tuning the effective refractive index using rapid electrical switching of Sb2Se3 film from amorphous to crystalline states and vice versa. The generation of OAM waves relies on a traveling wave modulation of the refractive index of the micro‐ring, which breaks the degeneracy of oppositely oriented whispering gallery modes. The proposed device is capable of producing rapidly tunable OV beams, carrying different OAM modes by using electrically controllable switching of ultra‐low‐loss PCM Sb2Se3.

     
    more » « less
  3. Bragg gratings offer high-performance filtering and routing of light on-chip through a periodic modulation of a waveguide’s effective refractive index. Here, we model and experimentally demonstrate the use of Sb2Se3, a nonvolatile and transparent phase-change material, to tune the resonance conditions in two devices which leverage periodic Bragg gratings—a stopband filter and Fabry-Perot cavity. Through simulations, we show that similar refractive indices between silicon and amorphous Sb2Se3can be used to induce broadband transparency, while the crystalline state can enhance the index contrast in these Bragg devices. Our experimental results show the promise and limitations of this design approach and highlight specific fabrication challenges which need to be addressed in future implementations.

     
    more » « less
  4. Abstract

    Phase change materials (PCMs) have long been used as a storage medium in rewritable compact disk and later in random access memory. In recent years, integration of PCMs with nanophotonic structures has introduced a new paradigm for non‐volatile reconfigurable optics. However, the high loss of the archetypal PCM Ge2Sb2Te5in both visible and telecommunication wavelengths has fundamentally limited its applications. Sb2S3has recently emerged as a wide‐bandgap PCM with transparency windows ranging from 610 nm to near‐IR. In this paper, the strong optical phase modulation and low optical loss of Sb2S3are experimentally demonstrated for the first time in integrated photonic platforms at both 750 and 1550 nm. As opposed to silicon, the thermo‐optic coefficient of Sb2S3is shown to be negative, making the Sb2S3–Si hybrid platform less sensitive to thermal fluctuation. Finally, a Sb2S3integrated non‐volatile microring switch is demonstrated which can be tuned electrically between a high and low transmission state with a contrast over 30 dB. This work experimentally verifies prominent phase modification and low loss of Sb2S3in wavelength ranges relevant for both solid‐state quantum emitter and telecommunication, enabling potential applications such as optical field programmable gate array, post‐fabrication trimming, and large‐scale integrated quantum photonic network.

     
    more » « less
  5. We present a broadband integrated photonic polarization splitter and rotator (PSR) using adiabatically tapered coupled waveguides with subwavelength grating (SWG) claddings. The PSR adiabatically rotates and splits the fundamental transverse-magnetic (TM0) input to the fundamental transverse-electric (TE0) mode in the coupler waveguide, while passing the TE0input through the same waveguide. The SWGs work as an anisotropic metamaterial and facilitate modal conversions, making the PSR efficient and broadband. We rigorously present our design approaches in each section and show the SWG effect by comparing with and without the SWG claddings. The coupling coefficients in each segment explicitly show a stronger coupling effect when the SWGs are included, confirmed by the coupled-mode theory simulations. The full numerical simulation shows that the SWG-PSR operates at 1500–1750 nm (≈250 nm) wavelengths with an extinction ratio larger than 20 dB, confirmed by the experiment for the 1490–1590 nm range. The insertion losses are below 1.3 dB. Since our PSR is designed based on adiabatical mode evolution, the proposed PSR is expected to be tolerant to fabrication variations and should be broadly applicable to polarization management in photonic integrated circuits.

     
    more » « less