This paper addresses the Informative Path Planning (IPP) algorithm for autonomous robots to explore unknown 2D environments for mapping purposes. IPP can be beneficial to many applications such as search and rescue and cave exploration, where mapping an unknown environment is necessary. Autonomous robots' limited operation time due to their finite battery necessitates an efficient IPP algorithm, however, it is challenging because autonomous robots may not have any information about the environment. In this paper, we formulate a mathematical structure of the IPP problem along with the derivation of the optimal control input. Then, a discretized model for the IPP algorithm is presented as a solution for exploring an unknown environment. The proposed approach provides relatively fast computation time while being applicable to broad robot and sensor platforms. Various simulation results are provided to show the performance of the proposed IPP algorithm.
more »
« less
Prioritized Robotic Exploration with Deadlines: A Comparison of Greedy, Orienteering, and Profitable Tour Approaches
This paper addresses the problem of robotic exploration of unknown indoor environments with deadlines. Indoor exploration using mobile robots has typically focused on exploring the entire environment without considering deadlines. The objective of the prioritized exploration in this paper is to rapidly compute the geometric layout of an initially unknown environment by exploring key regions of the environment and returning to the home location within a deadline. This prioritized exploration is useful for time-critical and dangerous environments where rapid robot exploration can provide vital information for subsequent operations. For example, firefighters, for whom time is of the essence, can utilize the map generated by this robotic exploration to navigate a building on fire. In our previous work, we showed that a priority-based greedy algorithm can outperform a cost-based greedy algorithm for exploration under deadlines. This paper models the prioritized exploration problem as an Orienteering Problem (OP) and a Profitable Tour Problem (PTP) in an attempt to generate exploration strategies that can explore a greater percentage of the environment in a given amount of time. The paper presents simulation results on multiple graph-based and Gazebo environments. We found that in many cases the priority-based greedy algorithm performs on par or better than the OP and PTP-based algorithms. We analyze the potential reasons for this counterintuitive result.
more »
« less
- Award ID(s):
- 1919233
- PAR ID:
- 10473707
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 979-8-3503-2365-8
- Page Range / eLocation ID:
- 5737 to 5743
- Format(s):
- Medium: X
- Location:
- London, United Kingdom
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We consider the problem of time-limited robotic exploration in previously unseen environments where exploration is limited by a predefined amount of time. We propose a novel exploration approach using learning-augmented model-based planning. We generate a set of sub goals associated with frontiers on the current map and derive a Bellman Equation for exploration with these subgoals. Visual sensing and advances in semantic mapping of indoor scenes are exploited for training a deep convolutional neural network to estimate properties associated with each frontier: the expected unobserved area beyond the frontier and the expected time steps (discretized actions) required to explore it. The proposed model-based planner is guaranteed to explore the whole scene if time permits. We thoroughly evaluate our approach on a large-scale pseudo-realistic indoor dataset (Matterport3D) with the Habitat simulator. We compare our approach with classical and more recent RL-based exploration methods. Our approach surpasses the greedy strategies by 2.1% and the RL-based exploration methods by 8.4% in terms of coverage.more » « less
-
Abstract In this paper, we address the problem of autonomous multi-robot mapping, exploration and navigation in unknown, GPS-denied indoor or urban environments using a team of robots equipped with directional sensors with limited sensing capabilities and limited computational resources. The robots have no a priori knowledge of the environment and need to rapidly explore and construct a map in a distributed manner using existing landmarks, the presence of which can be detected using onboard senors, although little to no metric information (distance or bearing to the landmarks) is available. In order to correctly and effectively achieve this, the presence of a necessary density/distribution of landmarks is ensured by design of the urban/indoor environment. We thus address this problem in two phases: (1) During the design/construction of the urban/indoor environment we can ensure that sufficient landmarks are placed within the environment. To that end we develop afiltration-based approach for designing strategic placement of landmarks in an environment. (2) We develop a distributed algorithm which a team of robots, with no a priori knowledge of the environment, can use to explore such an environment, construct a topological map requiring no metric/distance information, and use that map to navigate within the environment. This is achieved using a topological representation of the environment (called aLandmark Complex), instead of constructing a complete metric/pixel map. The representation is built by the robot as well as used by them for navigation through a balanced strategy involving exploration and exploitation. We use tools from homology theory for identifying “holes” in the coverage/exploration of the unknown environment and hence guide the robots towards achieving a complete exploration and mapping of the environment. Our simulation results demonstrate the effectiveness of the proposed metric-free topological (simplicial complex) representation in achieving exploration, localization and navigation within the environment.more » « less
-
null (Ed.)This paper reports on developing an integrated framework for safety-aware informative motion planning suitable for legged robots. The information-gathering planner takes a dense stochastic map of the environment into account, while safety constraints are enforced via Control Barrier Functions (CBFs). The planner is based on the Incrementally-exploring Information Gathering (IIG) algorithm and allows closed-loop kinodynamic node expansion using a Model Predictive Control (MPC) formalism. Robotic exploration and information gathering problems are inherently path-dependent problems. That is, the information collected along a path depends on the state and observation history. As such, motion planning solely based on a modular cost does not lead to suitable plans for exploration. We propose SAFE-IIG, an integrated informative motion planning algorithm that takes into account: 1) a robot’s perceptual field of view via a submodular information function computed over a stochastic map of the environment, 2) a robot’s dynamics and safety constraints via discrete-time CBFs and MPC for closedloop multi-horizon node expansions, and 3) an automatic stopping criterion via setting an information-theoretic planning horizon. The simulation results show that SAFE-IIG can plan a safe and dynamically feasible path while exploring a dense map.more » « less
-
In this paper, we consider the problem of joint offloading and wireless scheduling design for parallel computing applications with hard deadlines. This is motivated by the rapid growth of compute-intensive mobile parallel computing applications (e.g., real-time video analysis, language translation) that require to be processed within a hard deadline. While there are many works on joint computing and communication algorithm design, most of them focused on the minimization of average computing time and may not be applicable for mobile applications with hard deadlines. In this work, we explicitly take hard deadlines for computing tasks into account and develop a joint offloading and scheduling algorithm based on the stochastic network optimization framework. The proposed algorithm is shown to achieve average energy consumption arbitrarily close to the optimal one. However, this algorithm involves a strong coupling between offloading and scheduling decisions, which yields significant challenges on its implementation. Towards this end, we first successfully decouple the offloading and scheduling decisions in the case with one time slot deadline by exploring the intrinsic structure of the proposed algorithm. Based on this, we further implement the proposed algorithm in the general setups. Simulations are provided to corroborate our findings.more » « less
An official website of the United States government

