skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Understanding pre-service teachers perspectives on STEM and robotics in early childhood classroom integration: A critical feminism perspective
This paper took up the tradition of Critical Feminism and Ethnography to examine early childhood education (ECE) pre-service teachers’ perspectives on STEM and robotics integration. The central research questions are (1) How can we make sense of preservice teachers’ formation of STEM/STEAM teacher identity while participating in our robotic unit from a Critical Feminist perspective? (2) What are preservice teachers’ perceptions of benefits, barriers and concerns (both structural level and individual level), and recommendations for pedagogical practice for STEM and robotics integration in ECE? (3) How can we better prepare and support pre-service teachers, largely women and non-STEM-majors, for STEM and robotics content integration in their classrooms? To answer the above questions, we collected interview data from 76 informants from a large public university in the Southeastern United States. Each informant designed a lesson plan on teaching with robots and completed approximately 30-minute structured interviews. We focused on our informants' lived experiences and centered their voices while conducting and analyzing the interviews via thematic coding and category analysis. Analysis of the interview stories indicated that our informants considered the robotics module in their pre-service training as a valuable learning experience of STEM/robotics integration in ECE. The three most commonly perceived benefits of STEM/robotics integration by pre-service teachers are early exposure helps build a STEM knowledge foundation (n = 66), STEM and robotics content effectively increases students’ motivation and engagement (n = 60), and bridging the gender gap in STEM as historically male-dominated fields (n = 27). The three most commonly perceived barriers are concern about age-appropriateness of robots (n = 53), time/state standard constraints (n = 35), and funding/resources available and support from the school and local district (n = 18). Our findings indicate structural and institutional barriers are still present and can potentially deter ECE teachers from implementing STEM/robotics content in their classrooms. We thus call for attention from a structural level instead of shifting the burdens onto both pre-service and in-service teachers. Employing a conscious effort of being self-reflexive, critical, and counter-hegemonic in our practices, this article is one of the first to approach motivation from a Critical Feminism perspective in the field and provides tangible implications for both engineering education research and practice.  more » « less
Award ID(s):
1927595
PAR ID:
10473739
Author(s) / Creator(s):
;
Publisher / Repository:
American Society for Engineering Education
Date Published:
Journal Name:
2023 ASEE Annual Conference & Exposition
Page Range / eLocation ID:
1-18
Format(s):
Medium: X
Location:
Baltimore , Maryland
Sponsoring Org:
National Science Foundation
More Like this
  1. Brown, Ryan; Antink-Meyer, Allison (Ed.)
    Current education reforms call for engaging students in learning science, technology, engineering, and mathematics (STEM) in an integrative way. This critical case study of one fourth grade teacher investigated the use of educational robots (ER) not only for teaching coding, but as an instructional support in teaching mathematical concepts. To support teachers in teaching coding in an integrative and logical manner, our team developed the Collective Argumentation Learning and Coding (CALC) approach. The CALC approach consists of three elements: choice of task, coding content, and teacher support for argumentation. After a cohort of elementary teachers completed a professional development course, we followed them into their classrooms to support and document implementation of the CALC approach. Data for this case consisted of video recordings of two lessons, a Pre-interview, and Post-interview after each lesson. Research questions included: How does an elementary teacher use the CALC approach (integrative STEM approach) to teach mathematics concepts with ER? What are the teacher’s perspectives towards teaching mathematics with ER using an integrative STEM approach? Results from this critical case provide evidence that teachers can successfully integrate ER into the mathematics curriculum without losing coherence of mathematics topics and while remaining sensitive to students’ needs. 
    more » « less
  2. The integration of engineering content at the pre-college level is gaining global traction as a strategy to improve learning outcomes and to promote inclusion and diversity in STEM (Science, Technology, Engineering, and Mathematics). Preservice teacher programs have become natural insertion points for integration efforts by providing future K-12 teachers with the resources and preparation to teach engineering as part of their academic preparation. There is a need to understand the socio-cognitive mechanisms by which teacher preparation programs can help teachers to integrate engineering in their future classrooms. This work examines how an innovative cross disciplinary program impacted important social-cognitive drivers of engineering integration. We used mediation analysis to understand a successful pathway to engineering integration as a result of exposure to a cross-disciplinary collaboration with engineering students. This study revealed how participation in the program as part of their academic preparation increased PTSs’ confidence to teach engineering and their beliefs about the importance of engineering content, which in turn, increased their intention to integrate engineering in the classroom. 
    more » « less
  3. While national frameworks call for the integration of science, technology, engineering, mathematics, and computer science (STEM+CS) in K-12 contexts, few studies consider elementary teachers’ perceptions of implementing STEM+CS projects in science classrooms. This single case study explores elementary science teachers’ perceptions of enacting STEM+CS curricular materials. Survey and interview data were collected over the four-week project and qualitatively coded. Findings demonstrate teachers’ reported struggles to implement unfamiliar disciplines and leverage students’ prior knowledge in familiar disciplines as well as unanticipated consequences of instructional decisions based on perceived student engagement and pacing. Results underscore the value of teacher voice for curricular and professional development and highlight the need for further investigation of how teachers’ perceptions may influence enactment of STEM+CS curricular materials. 
    more » « less
  4. Abstract. We investigated preservice teachers’ (PSTs) (N=13) experiences in a science teaching inquiry group professional learning experience on integrating computational thinking (CT) into elementary science. A subgroup of PSTs (n=6) participated alongside their mentor teachers. The others (n=7) participated independently. Our research question was: To what extent, if any, did participating in a professional learning experience on CT along with their mentor teachers appear to enhance PSTs’ learning and practice related to CT integration? We analyzed evaluation feedback, interviews, participant-developed lesson plans, surveys, and attendance data. Findings suggested that participants in both groups reacted positively to the learning experience’s content and approach, and expressed similar perceptions of their CT integration knowledge. PSTs participating with their mentor teachers felt slightly more successful in their CT integration efforts, and perceived CT integration as more feasible in their teaching contexts. However, differences between the groups were minimal. We also noted possible of influence of PSTs’ perceptions of the districts in which they were teaching. Our findings underscore the importance of PSTs’ perceptions of their teaching contexts when bringing a new innovation to the classroom - namely, perceptions of their mentors and curricula as supportive of the innovation. Through this ongoing work, we seek to identify empirically-supported strategies for preparing PSTs to integrate CT into their future classrooms. 
    more » « less
  5. Baldwin, Amy; Danns, Donna; Howe, Chad (Ed.)
    In this presentation, we will do a longitudinal comparison of science lesson plan implementations from a group of preservice teachers’ experiences during a STEM-based summer program to their experiences during their Fall semester in their practice in regular elementary and middle schools. On the one hand, their summer experiences consisted of learning and implementing science and engineering lesson plans using culturally and linguistically sustaining pedagogies, which was an intensive and guided opportunity led by university faculty on one of the university campuses. In this experience, preservice teachers collaborated with peers for 15 days to implement and evaluate their teaching of science activities in a flexible environment. On the other hand, preservice teachers have their required practice in schools during senior year to implement lesson plans and become familiar with the regular tasks of an in-service teacher. This comparison is part of the research conducted by the Culturally Sustaining Pedagogies in Science for English Language Learners project funded by the National Science Foundation and focuses on providing the necessary pedagogical tools to teach STEM to multilingual students (in our case, from Latin American countries). We conclude with a series of recommendations for preservice teachers and in-service teachers who have multilingual and emerging bilingual learners in their classrooms. 
    more » « less