skip to main content


Title: Exploring Elementary Teachers’ Perceptions of Teaching a Science, Engineering, Mathematics, and Computer Science Project
While national frameworks call for the integration of science, technology, engineering, mathematics, and computer science (STEM+CS) in K-12 contexts, few studies consider elementary teachers’ perceptions of implementing STEM+CS projects in science classrooms. This single case study explores elementary science teachers’ perceptions of enacting STEM+CS curricular materials. Survey and interview data were collected over the four-week project and qualitatively coded. Findings demonstrate teachers’ reported struggles to implement unfamiliar disciplines and leverage students’ prior knowledge in familiar disciplines as well as unanticipated consequences of instructional decisions based on perceived student engagement and pacing. Results underscore the value of teacher voice for curricular and professional development and highlight the need for further investigation of how teachers’ perceptions may influence enactment of STEM+CS curricular materials.  more » « less
Award ID(s):
1742195
PAR ID:
10387202
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 16th International Conference of the Learning Sciences (ICLS)
Page Range / eLocation ID:
1325-1328
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The computer science education research community has thought deeply about how students learn computational thinking (CT) as it relates to other domains of computer science (CS; e.g. programming) and core content areas (STEM, humanities), but less work has examined the role of CT in pathways to computer science for K-5 teachers. This panel examines the experiences of practitioners – educators, administrators, and curriculum designers--who have both experienced and supported others in incorporating CT in elementary school settings as a pathway to or component of computer science education. All panelists have worked with teachers not previously trained to teach CS and have encountered the many opportunities and difficulties of bringing CS to in-service teachers. They will reflect on the multiple ways educators grapple with CT: as an entry point to computer science, as a way to enrich core disciplines, and as a way to support equitable practice – for example, several of the panelists have experiences leveraging CT and other domains of CS to support the expression and development of emergent bilingual students. The panel will explore ways in which CT and its associated language and strategies for problem solving may provide a particularly helpful onramp to CS generally, including integration with other disciplines and with language about academic skills more generally. 
    more » « less
  2. Introduction

    Elementary teachers face many challenges when including reform-based science instruction in their classrooms, and some teachers have chosen to enhance their science instruction by introducing students to citizen science (CS) projects. When CS projects are incorporated in formal school settings, students have an opportunity to engage in real-world projects as they collect and make sense of data, yet relatively few CS projects offer substantial guidance for teachers seeking to implement the projects, placing a heavy burden on teacher learning.

    Methods

    Framed in theory on teacher relationships with curricula, we prepared science standards-aligned educative support materials for two CS projects. We present convergent mixed methods research that examines two teachers’ contrasting approaches to including school-based citizen science (SBCS) in their fifth-grade classrooms, each using support materials for one of the two CS projects. Both are veteran teachers at under-resourced Title 1 (an indicator of the high percentage of the students identified as economically disadvantaged) rural schools in the southeastern United States. We document the teachers’ interpretations and use of SBCS materials for the CS projects with data from classroom observations, instructional logs, teacher interviews, and student focus groups.

    Results

    One teacher adapted the materials to include scaffolding to position students for success in data collection and analysis. In contrast, the second teacher adapted the SBCS support materials to maintain a teacher-centered approach to instruction, identifying perceptions of students’ limited abilities and limited instructional time as constraining factors.

    Discussion

    We discuss the intersection of CS projects in formal education and opportunities for engaging students in authentic science data collection, analysis, and sense-making. The two teachers’ stories identify the influences of school context and the need for teacher support to encourage elementary teachers’ use of SBCS instruction to supplement their science instruction.

     
    more » « less
  3. Hartshorne, Richard (Ed.)
    Data science and computational thinking (CT) skills are important STEM literacies necessary to make informed daily decisions. In elementary schools, particularly in rural areas, there is little instruction and limited research towards understanding and developing these literacies. Using a Research-Practice Partnership model (RPP; Coburn & Penuel, 2016) we conducted multimethod research investigating nine elementary teachers’ perceptions of data science and related curriculum design during professional development (PD). Connected Learning theory, enhanced with Universal Design for Learning, guided ways we assisted teachers in designing the data science curriculum. Findings suggest teachers maintained high levels of interest in data science instruction and CT before and after the PD and increased their self-efficacy towards teaching data science. A thematic analysis revealed how a data science framework guided curriculum design and assisted teachers in defining, understanding, and co-creating the curriculum. During curriculum design, teachers shared the workload among partners, made collaborative design choices, integrated differentiation strategies, and felt confidence towards teaching data science. Identified challenges included locating data sets and the complexity of understanding data science and related software. This study addresses the research gap in data science education for elementary teachers and assists with successful strategies for data science PD and curricular design. 
    more » « less
  4. The Idaho Elementary Computer Science (CS) Collaborative (IECC) is a researcher-practitioner partnership dedicated to understanding how to better support the predominately rural districts in Idaho to implement elementary CS education. As part of the IECC's work, we conducted a survey of elementary teachers across the state. This poster will present our initial findings. Two of the research questions we addressed via the survey are: (1) What factors would motivate Idaho elementary teachers to pursue professional development (PD) related to CS? (2) What are elementary teachers' perceptions of the value of connecting CS education to rural community economies and industries? Descriptive analyses of 309 survey responses suggest that about three-quarters of elementary teachers reported that the following factors would be at least somewhat influential in their decisions to pursue CS PD: a K-5 computational thinking requirement, a district-wide CS planning staff, a pathway for elementary teachers to earn a certification in CS teaching, and a way to request CS PD funding. Few (9%) Idaho elementary teachers found that the perception of a disconnect between CS education and rural community interests was a significant barrier to elementary CS education. Even so, over 70% of them were moderately to strongly interested in mechanisms for connecting their CS education efforts to rural community industries through guest speakers and industry partnerships. The poster will discuss the implications of these and other emerging findings from the teacher survey, as well as IECC's related surveys of Idaho district superintendents and elementary school principals. 
    more » « less
  5. As computer science (CS) education becomes more prevalent in K-12 instruction, it is critical for educators, researchers, and curriculum developers to identify culturally responsive and pedagogically inclusive approaches that can increase participation, access, and feelings of belonging for students from historically marginalized communities. In response, we developed an equity-centered curricular framework and illustrative crosswalk that synchronizes three distinct pedagogical approaches: culturally responsive pedagogy (CRP), Universal Design for Learning (UDL), and project-based learning (PBL). We describe the framework’s theoretical underpinnings and explain how this framework informed the development of an integrated elementary science+CS curricular unit and provide examples of its implementation. Next, we describe the relationship between our framework, the integrated curricular unit, and educative materials designed to help teachers use the lessons and transform their practice. Finally, we highlight the framework’s potential for broader implementation in the quest to promote equitable CS instruction grounded in the experiences and perspectives of diverse student populations. The crosswalk is a graphical representation of the framework that communicates relationships amongst the elements in a digestible and practical way. This Equity-Centered Curricular Crosswalk addresses both lesson features and teacher practices, to underscore our belief that the responsibility of equity-based pedagogy should not be solely borne by teachers. As educators, researchers, and curriculum developers consider their interconnected roles and responsibilities in the enactment of CRP and UDL, the crosswalk provides an important link between equity-based instructional theories and the realities of classroom practices.

     
    more » « less