skip to main content


This content will become publicly available on November 8, 2024

Title: Synthesis of graded CdS 1−x Se x nanoplatelet alloys and heterostructures from pairs of chalcogenoureas with tailored conversion reactivity

A mixture ofN,N,N′-trisubstituted thiourea and cyclicN,N,N′,N′-tetrasubstituted selenourea precursors were used to synthesize three monolayer thick CdS1−xSexnanoplatelets in a single synthetic step.

 
more » « less
Award ID(s):
2004008 1903112 2039380
NSF-PAR ID:
10473742
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Chemical Science
Date Published:
Journal Name:
Chemical Science
Volume:
14
Issue:
43
ISSN:
2041-6520
Page Range / eLocation ID:
12345 to 12354
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1.  
    more » « less
  2. Abstract

    Epitaxial (Ti1−xMgx)0.25Al0.75N(0001)/Al2O3(0001) layers are used as a model system to explore how Fermi‐level engineering facilitates structural stabilization of a host matrix despite the intentional introduction of local bonding instabilities that enhance the piezoelectric response. The destabilizing octahedral bonding preference of Ti dopants and the preferred 0.67 nitrogen‐to‐Mg ratio for Mg dopants deteriorate the wurtzite AlN matrix for both Ti‐rich (x< 0.2) and Mg‐rich (x≥ 0.9) alloys. Conversely,x= 0.5 leads to a stability peak with a minimum in the lattice constant ratioc/a, which is caused by a Fermi‐level shift into the bandgap and a trend toward nondirectional ionic bonding, leading to a maximum in the expected piezoelectric stress constante33. The refractive index and the subgap absorption decrease withx, the optical bandgap increases, and the elastic constant along the hexagonal axisC33= 270 ± 14 GPa remains composition independent, leading to an expected piezoelectric constantd33= 6.4 pC N−1atx= 0.5, which is 50% larger than for the pure AlN matrix. Thus, contrary to the typical anticorrelation between stability and electromechanical coupling, the (Ti1−xMgx)0.25Al0.75N system exhibits simultaneous maxima in the structural stability and the piezoelectric response atx= 0.5.

     
    more » « less
  3. Abstract

    Materials with tunable infrared refractive index changes have enabled active metasurfaces for novel control of optical circuits, thermal radiation, and more. Ion‐gel‐gated epitaxial films of the perovskite cobaltite La1−xSrxCoO3−δ(LSCO) with 0.00 ≤x≤ 0.70 offer a new route to significant, voltage‐tuned, nonvolatile refractive index modulation for infrared active metasurfaces, shown here through Kramers–Kronig‐consistent dispersion models, structural and electronic transport characterization, and electromagnetic simulations before and after electrochemical reduction. As‐grown perovskite films are high‐index insulators forx< 0.18 but lossy metals forx> 0.18, due to a percolation insulator‐metal transition. Positive‐voltage gating of LSCO transistors withx> 0.18 reveals a metal‐insulator transition from the metallic perovskite phase to a high‐index (n> 2.5), low‐loss insulating phase, accompanied by a perovskite to oxygen‐vacancy‐ordered brownmillerite transformation at highx. Atx< 0.18, despite nominally insulating character, the LSCO films undergo remarkable refractive index changes to another lower‐index, lower‐loss insulating perovskite state with Δn >0.6. In simulations of plasmonic metasurfaces, these metal‐insulator and insulator‐insulator transitions support significant, varied mid‐infrared reflectance modulation, thus framing electrochemically gated LSCO as a diverse library of room‐temperature phase‐change materials for applications including dynamic thermal imaging, camouflage, and optical memories.

     
    more » « less
  4. Abstract

    The quinary members in the solid solution Hf2Fe1−δRu5−xIrx+δB2(x=1–4, VE=63–66) have been investigated experimentally and computationally. They were synthesized via arc‐melting and analyzed by EDX and X‐ray diffraction. Density functional theory (DFT) calculations predicted a preference for magnetic ordering in all members, but with a strong competition between ferro‐ and antiferromagnetism arising from interchain Fe−Fe interactions. The spin exchange and magnetic anisotropy energies predicted the lowest magnetic hardness forx=1 and 3 and the highest forx=2. Magnetization measurements confirm the DFT predictions and demonstrate that the antiferromagnetic ordering (TN=55–70 K) found at low magnetic fields changed to ferromagnetic (TC=150–750 K) at higher fields, suggesting metamagnetic behavior for all samples. As predicted, Hf2FeRu3Ir2B2has the highest intrinsic coercivity (Hc=74 kA/m) reported to date for Ti3Co5B2‐type phases. Furthermore, all coercivities outperform that of ferromagnetic Hf2FeIr5B2, indicating the importance of AFM interactions in enhancing magnetic anisotropy in these materials. Importantly, two members (x=1 and 4) maintain intrinsic coercivities in the semi‐hard range at room temperature. This study opens an avenue for controlling magnetic hardness by modulating antagonistic AFM and FM interactions in low‐dimensional rare‐earth‐free magnetic materials.

     
    more » « less
  5. Abstract

    The oxidation of 2D MXenes jeopardizes their shelf life, both in colloidal dispersions and in functional devices. Certain compounds have been shown to effectively mitigate oxidation of MXenes (such as sodium L‐ascorbate, ascorbic acid, and polyanions), but the nature of interaction between these antioxidants and MXene remains unknown, which impedes the future selection and design of improved protection. This work systematically examines the interactions between three classes of organic antioxidant candidates, α‐hydroxy acids, polycarboxylic acids, and phenols with Tin+1CnTxMXenes, specifically Ti3C2Txand Ti2CTx. Interestingly, while some antioxidants provide no protection for the MXenes, and some antioxidants even accelerate their degradation, three antioxidants (e.g., citric acid, tartaric acid, and oxalic acid) protect the MXene nanosheets exceptionally well, showing minimum MXene degradation after the 14‐day storage period. Analysis of the antioxidants’ molecular structure and efficacy suggests that chelation interactions with the transition metal atoms of the nanosheets play a key role in effective protection of MXenes from oxidation.

     
    more » « less