Insecticides are a major tool for controlling pest species. Their widespread use results in damage to non-targeted insects, with honey bees particularly at risk. During foraging, honey bees learn and remember floral charac teristics that are associated with food. As insect pollinators, honey bees inadvertently contact chemicals which can have multiple negative impacts. The toxicity of two insecticides from different classes, ethion (47.79 mg a.i. L − 1 ) and hexaflumuron (500 mg a.i.L − 1 ), on learning, memory, and sensory perception were evaluated. We found that oral exposure to ethion had adverse effects on learned proboscis extension toward reward-associated odors and colors. In addition, we showed reduced sucrose consumption and sucrose responsiveness after expo sure. Hexaflumuron also impaired olfactory learning and memory and decreased responsiveness to sucrose and water. Exposure to sub-lethal concentration of the cholinergic organophosphate insecticide, ethion (47.79 mg a.i. L − 1 ), and the field-recommended concentration of hexaflumuron (500 mg a.i.L − 1 ), significantly impaired behavior involved in foraging. Our results suggest that several behavioral characteristics of honey bees be evaluated when testing an insecticide rather than relying on just one behavioral measure. 
                        more » 
                        « less   
                    
                            
                            Field-realistic exposure to neonicotinoid and sulfoximine insecticides impairs visual and olfactory learning and memory in Polistes paper wasps
                        
                    
    
            Exposure to insecticides may contribute to global insect declines due to sublethal insecticide effects on non-target species. Thus far, much research on non-target insecticide effects has focused on neonicotinoids in a few bee species. Much less is known about effects on other insect taxa or newer insecticides, such as sulfoxaflor. Here, we studied the effects of an acute insecticide exposure on both olfactory and visual learning in free-moving Polistes fuscatus paper wasps. Wasps were exposed to a single, field realistic oral dose of either low dose imidacloprid, high dose imidacloprid, or sulfoxaflor. Then, visual and olfactory learning and short-term memory were assessed. We found that acute insecticide exposure influenced performance, as sulfoxaflor and high dose imidacloprid exposed wasps made fewer correct choices than control wasps. Notably, both visual and olfactory performance were similarly impaired. Wasps treated with high dose imidacloprid were also less likely to complete the learning assay than wasps from other treatment groups. Instead, wasps remained stationary and unmoving in the testing area, consistent with imidacloprid interfering with motor control. Finally, wasps treated with sulfoxaflor were more likely to die in the week after treatment than wasps in the other treatment groups. Our findings demonstrate that sublethal, field-realistic dosages of both neonicotinoid and sulfoximine-based insecticides impair wasp learning and short-term memory may have additional effects on survival and motor functioning. Insecticides have broadly detrimental effects on diverse non-target insects that may influence foraging effectiveness, pollination services, and ecosystem function. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2134910
- PAR ID:
- 10473863
- Publisher / Repository:
- The Company of Biologists
- Date Published:
- Journal Name:
- Journal of Experimental Biology
- ISSN:
- 0022-0949
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The European honey bee, Apis mellifera L., is the single most valuable managed pollinator in the world. Poor colony health or unusually high colony losses of managed honey bees result from a myriad of stressors, which are more harmful in combination. Climate change is expected to accentuate the effects of these stressors, but the physiological and behavioral responses of honey bees to elevated temperatures while under simultaneous influence of one or more stressors remain largely unknown. Here we test the hypothesis that exposure to acute, sublethal doses of neonicotinoid insecticides reduce thermal tolerance in honey bees. We administered to bees oral doses of imidacloprid and acetamiprid at 1/5, 1/20, and1/100 of LD50 and measured their heat tolerance 4 h post- feeding, using both dynamic and static protocols. Contrary to our expectations, acute exposure to sublethal doses of both insecticides resulted in higher thermal tolerance and greater survival rates of bees. Bees that ingested the higher doses of insecticides displayed a critical thermal maximum from 2˚C to 5 ˚C greater than that of the control group, and 67%–87% reduction in mortality. Our study suggests a resilience of honey bees to high temperatures when other stressors are present, which is consistent with studies in other insects. We discuss the implications of these results and hypothesize that this compensatory effect is likely due to induction of heat shock proteins by the insecticides, which provides temporary protection from elevated temperaturesmore » « less
- 
            Abstract Plant‐systemic neonicotinoid (NN) insecticides can exert non‐target impacts on organisms like beneficial insects and soil microbes. NNs can affect plant microbiomes, but we know little about their effects on microbial communities that mediate plant‐insect interactions, including nectar‐inhabiting microbes (NIMs). Here we employed two approaches to assess the impacts of NN exposure on several NIM taxa. First, we assayed the in vitro effects of six NN compounds on NIM growth using plate assays. Second, we inoculated a standardised NIM community into the nectar of NN‐treated canola (Brassica napus) and assessed microbial survival and growth after 24 h. With few exceptions, in vitro NN exposure tended to decrease bacterial growth metrics. However, the magnitude of the decrease and the NN concentrations at which effects were observed varied substantially across bacteria. Yeasts showed no consistent in vitro response to NNs. In nectar, we saw no effects of NN treatment on NIM community metrics. Rather, NIM abundance and diversity responded to inherent plant qualities like nectar volume. In conclusion, we found no evidence that NIMs respond to field‐relevant NN levels in nectar within 24 h, but our study suggests that context, specifically assay methods, time and plant traits, is important in assaying the effects of NNs on microbial communities.more » « less
- 
            ABSTRACT Variable spring temperatures may expose developing insects to sublethal conditions, resulting in long-term consequences. The alfalfa leafcutting bee, Megachile rotundata, overwinters as a prepupa inside a brood cell, resuming development in spring. During these immobile stages of development, bees must tolerate unfavorable temperatures. In this study, we tested how exposure to low temperature stress during development affects subsequent reproduction and characteristics of the F1 generation. Developing male and female M. rotundata were exposed to either constant (6°C) or fluctuating (1 h day−1 at 20°C) low temperature stress for 1 week, during the pupal stage, to mimic a spring cold snap. Treated adults were marked and released into field cages, and reproductive output was compared with that of untreated control bees. Exposure to low temperatures during the pupal stage had mixed effects on reproduction and offspring characteristics. Females treated with fluctuating low temperatures were more likely to nest compared with control bees or those exposed to constant low temperature stress. Sublethal effects may have contributed to low nesting rates of bees exposed to constant low temperatures. Females from that group that were able to nest had fewer, larger offspring with high viability, suggesting a trade-off. Interestingly, offspring of bees exposed to fluctuating low temperatures were more likely to enter diapause, indicating that thermal history of parents, even during development, is an important factor in diapause determination.more » « less
- 
            Abstract BackgroundInsecticide resistance remains a major public health problem. Resistance surveillance is critical for effective vector control and resistance management planning. Commonly used insecticide susceptibility bioassays for mosquitoes are the CDC bottle bioassay and the WHO tube test. Less commonly used in the field but considered the gold standard for assessing insecticide susceptibility in the development of novel insecticides is the topical application bioassay. Each of these bioassays has critical differences in how they assess insecticide susceptibility that impacts their ability to differentiate between resistant and susceptible populations or determine different levels of resistance intensity. MethodsWe compared the CDC bottle bioassay, the WHO tube test, and the topical application bioassay in establishing the dose–response against deltamethrin (DM) using the DM-resistantAedes aegyptistrain MC1. Mosquitoes were exposed to a range of insecticide concentrations to establish a dose–response curve and assess variation around model predictions. In addition, 10 replicates of 20–25 mosquitoes were exposed to a fixed dose with intermediate mortality to assess the degree of variation in mortality. ResultsThe topical application bioassay exhibited the lowest amount of variation in the dose–response data, followed by the WHO tube test. The CDC bottle bioassay had the highest level of variation. In the fixed-dose experiment, a higher variance was similarly found for the CDC bottle bioassay compared with the WHO tube test and topical application bioassay. ConclusionThese data suggest that the CDC bottle bioassay has the lowest power and the topical application bioassay the highest power to differentiate between resistant and susceptible populations and assess changes over time and between populations. This observation has significant implications for the interpretation of surveillance results from different assays. Ultimately, it will be important to discuss optimal insecticide resistance surveillance tools in terms of the surveillance objective, practicality in the field, and accuracy of the tool to reach that objective. Graphical Abstractmore » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
