skip to main content


This content will become publicly available on June 27, 2024

Title: The versatility of 1,4,8,11-tetraazacyclotetradecane (cyclam) in the formation of compounds of Co 2+ , Ni 2+ , Cu 2+ , and Zn 2+ with metal ions in and out of the cyclic ligand ring
Herein we report the results of preparing metal compounds (where the metal ions are Co2+, Ni2+, Cu2+, Zn2+) with the cyclic ligand 1,4,8,11-tetraazacyclotetradecane [cyclam] under a variety of conditions of metal-ligand ratios and solvent media. In all cases, we used metal Cl2 . nH2O salts (except for anhydrous CoCl2), as specified. Outcome: we isolated species with a four-coordinate metal in the N4 cavity of the ligand alone, and also with either one or two additional axial ligands. Those axial ligands can be (a) a single chloride, leading to penta-coordinated+ products; (b) two chlorides, leading to octahedral-neutral compounds; (c) two waters, giving rise to hexa-coordinated [(cyclam)metal(H2O)2]2+ species. Finally, in the case of HCl added to the reaction medium, the cyclam can be di-protonated and appears as [(cyclam)H2]2+ in the crystals. With such a variety of products, it is not surprising that since the metal coordination numbers vary, the cyclam ligand stereochemistries are thereby affected. Interestingly, the [(cyclam)metal] species are invariably hydrogen-bonded to one another in infinite strings of two kinds: (1) those for which the crystal’s Z’ = 1 have single strings; (2) when Z’ = 2, there is a pair of homogeneous strings attached to one another by a variety of hydrogen-bonding linkages. Finally, we observed an interesting pair of hydroxonium cations: the first is hydoxonium cations in a pleated 2-D sheet consisting of fused pentagons located between sheets of [(cyclam)metal] moieties; the second one is an infinite string of composition (H3O+)-(H2O)-(H3O+)-(H2O)-(H3O+)-(H2O)-(H3O+).  more » « less
Award ID(s):
2018753
NSF-PAR ID:
10473895
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
De Gruyter
Date Published:
Journal Name:
Zeitschrift für Kristallographie - Crystalline Materials
Volume:
238
Issue:
7-8
ISSN:
2194-4946
Page Range / eLocation ID:
243 to 251
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Structural analyses of the compounds di-μ-acetato-κ 4 O : O ′-bis{[2-methoxy- N , N -bis(quinolin-2-ylmethyl)ethanamine-κ 4 N , N ′, N ′′, O ]manganese(II)} bis(tetraphenylborate) dichloromethane 1.45-solvate, [Mn 2 (C 23 O 2 ) 2 (C 23 H 23 N 3 O) 2 ](C 24 H 20 B)·1.45CH 2 Cl 2 or [Mn(DQMEA)(μ-OAc) 2 Mn(DQMEA)](BPh 4 ) 2 ·1.45CH 2 Cl 2 or [1] (BPh 4 ) 2 ·1.45CH 2 Cl 2 , and (acetato-κ O )[2-hydroxy- N , N -bis(quinolin-2-ylmethyl)ethanamine-κ 4 N , N ′, N ′′, O ](methanol-κ O )manganese(II) tetraphenylborate methanol monosolvate, [Mn(CH 3 COO)(C 22 H 21 N 3 O)(CH 3 OH)](C 24 H 20 B)·CH 3 OH or [Mn(DQEA)(OAc)(CH 3 OH)]BPh 4 ·CH 3 OH or [2] BPh 4 ·CH 3 OH, by single-crystal X-ray diffraction reveal distinct differences in the geometry of coordination of the tripodal DQEA and DQMEA ligands to Mn II ions. In the asymmetric unit, compound [1] (BPh 4 ) 2 ·(CH 2 Cl 2 ) 1.45 crystallizes as a dimer in which each manganese(II) center is coordinated by the central amine nitrogen, the nitrogen atom of each quinoline group, and the methoxy-oxygen of the tetradentate DQMEA ligand, and two bridging-acetate oxygen atoms. The symmetric Mn II centers have a distorted, octahedral geometry in which the quinoline nitrogen atoms are trans to each other resulting in co-planarity of the quinoline rings. For each Mn II center, a coordinated acetate oxygen participates in C—H...O hydrogen-bonding interactions with the two quinolyl moieties, further stabilizing the trans structure. Within the crystal, weak π – π stacking interactions and intermolecular cation–anion interactions stabilize the crystal packing. In the asymmetric unit, compound [2] BPh 4 ·CH 3 OH crystallizes as a monomer in which the manganese(II) ion is coordinated to the central nitrogen, the nitrogen atom of each quinoline group, and the alcohol oxygen of the tetradentate DQEA ligand, an oxygen atom of OAc, and the oxygen atom of a methanol ligand. The geometry of the Mn II center in [2] BPh 4 ·CH 3 OH is also a distorted octahedron, but the quinoline nitrogen atoms are cis to each other in this structure. Hydrogen bonding between the acetate oxygen atoms and hydroxyl (O—H...O) and quinolyl (C—H...O and N—H...O) moieties of the DQEA ligand stabilize the complex in this cis configuration. Within the crystal, dimerization of complexes occurs by the formation of a pair of intermolecular O3—H3...O2 hydrogen bonds between the coordinated hydroxyl oxygen of the DQEA ligand of one complex and an acetate oxygen of another. Additional hydrogen-bonding and intermolecular cation–anion interactions contribute to the crystal packing. 
    more » « less
  2. Co( ii ) complexes of 1,4,7,10-tetraazacyclododecane (CYCLEN) or 1,4,8,11-tetraazacyclotetradecane (CYCLAM) with 2-hydroxypropyl or carbamoylmethyl (amide) pendants are studied with the goal of developing paramagnetic chemical exchange saturation transfer (paraCEST) agents. Single-crystal X-ray diffraction studies show that two of the coordination cations with hexadentate ligands, [Co(DHP)] 2+ and [Co(BABC)] 2+ , form six-coordinate complexes; whereas two CYCLEN-based complexes with potentially octadentate ligands, [Co(THP)] 2+ and [Co(HPAC)] 2+ , are seven-coordinate with only three of the four pendant groups bound to the metal center. 1 H NMR spectra of these complexes suggest that the six-coordinate complexes are present as a single isomer in aqueous solution. For the complexes which are seven-coordinate in the solid state, one is highly fluxional in aqueous solution on the NMR time scale ([Co(HPAC)] 2+ ), whereas the NMR spectrum of [Co(THP)] 2+ is consistent with an eight-coordinate complex with all pendants bound. Co( ii ) complexes of CYCLEN derivatives show CEST effects of low intensity that are assigned to NH or OH groups of the pendants. One complex, [Co(DHP)] 2+ , shows a highly-shifted CEST peak at 113 ppm versus bulk water, attributed to OH protons. However, the CEST effect is largest for two Co( ii ) CYCLAM-based complexes with coordinated amide groups that undergo NH proton exchange. All five complexes are inert towards dissociation in buffered solutions containing carbonate and phosphate and towards trans-metalation by excess Zn( ii ). These data give insight into the production of an intense CEST effect for tetraazamacrocyclic complexes with pendant groups containing NH or OH exchangeable protons. The intense and highly shifted CEST peak(s) of the CYCLAM-based complexes suggest that they are promising for further development as paraCEST agents. 
    more » « less
  3. null (Ed.)
    The title compound, [Cu 2 (C 19 H 23 N 7 O)(C 2 H 3 O 2 ) 4 ] n , was obtained via reaction of copper(II) acetate with the coordinating ligand, 6-ethoxy- N 2 , N 4 -bis[2-(pyridin-2-yl)ethyl]-1,3,5-triazine-2,4-diamine. The crystallized product adopts the monoclinic P 2 1 / c space group. The metal core exhibits a paddle-wheel structure typical for dicopper tetraacetate units, with triazine and pyridyl nitrogen atoms from different ligands coordinating to the two axial positions of the paddle wheel in an asymmetric manner. This forms a coordination polymer with the segments of the polymer created by the c -glide of the P 2 1 / c setting of the space group. The resulting chains running along the c -axis direction are held together by intramolecular N—H...O hydrogen bonding. These chains are further packed by dispersion forces, producing an extended three-dimensional structure. 
    more » « less
  4. Biomass is abundant, inexpensive and renewable, therefore, it is highly expected to play a significant role in our future energy and chemical landscapes. The US DOE has identified furanic compounds (furfural and 5-(hydroxymethyl)furfural (HMF)) as the top platform building-block chemicals that can be readily derived from biomass sources [1]. Electrocatalytic conversion of these furanic compounds is an emerging route for the sustainable production of valuable chemicals [2, 3]. In my presentation, I will first present our recent mechanistic study of electrocatlytic hydrogenation (ECH) of furfural through a combination of voltammetry, preparative electrolysis, thiol-electrode modifications, and kinetic isotope studies [4]. It is demonstrated that two distinct mechanisms are operable on metallic Cu electrodes in acidic electrolytes: (i) electrocatalytic hydrogenation (ECH) and (ii) direct electroreduction. The contributions of each mechanism to the observed product distribution are clarified by evaluating the requirement for direct chemical interactions with the electrode surface and the role of adsorbed hydrogen. Further analysis reveals that hydrogenation and hydrogenolysis products are generated by parallel ECH pathways. Understanding the underlying mechanisms enables the manipulation of furfural reduction by rationally tuning the electrode potential, electrolyte pH, and furfural concentration to promote selective formation of important bio-based polymer precursors and fuels We further studied the mechanisms on the Pb electrode, based on the potential regulated ECH and ER products. Isotopic incorporation studies and electrokinetics have confirmed ECH process to alcohol and alkyl product followed different pathways: alcohol was generated from Langmuir Hinshelwood step through surface-bound furfural and hydrogen, which is sensitive to surface structures. In contrast, alkyl product was formed through an Eley–Rideal step via surface-bound furfural and the inner-sphere protons. By modifying the electrode/electrolyte interface, we have elucidated H2O and H3O+ matters in forming alcohol and alkyl products, respectively. Dynamic oscillation studies and electron paramagnetic resonance (EPR) finally confirmed that the alcohol and dimer products shared the same intermediate. The dimer was formed through the intermediate desorption from the surface to form radicals and the self-coupling of two radicals at the bulk electrolyte. Next, I will present electrocatalytic conversion of HMF to two biobased monomers in an H-type electrochemical cell [5]. HMF reduction (hydrogenation) to 2,5-bis(hydroxymethyl)furan (BHMF) was achieved under mild electrolyte conditions and ambient temperature using a Ag/C cathode. Meanwhile, HMF oxidation to 2,5-furandicarboxylic acid (FDCA) with ~100% efficiency was facilitated under the same conditions by a homogeneous nitroxyl radical redox mediator. We recently developed a three-electrode flow cell with an oxide-derived Ag (OD-Ag) cathode and catbon felt anode for paring elecatalytic oxidation and reduction of HMF [6]. The flow cell has a remarkably low cell voltage: from ~7.5 V to ~2.0 V by transferring the electrolysis from the H-type cell to the flow cell. This represents a more than fourfold increase in the energy efficiency at the 10 mA operation. A combined faradaic efficiency of 163% was obtained to BHMF and FDCA. Alternatively, the anodic hydrogen oxidation reaction on platinum further reduced the cell voltage to only ~0.85 V at 10 mA operation. These paired processes have shown potential for integrating renewable electricity and carbon for distributed chemical manufacturing in the future. 
    more » « less
  5. Alkylation of d - or l -phenylalanine or valine alkyl esters was carried out using methyl or phenyl Grignard reagents. Subsequent condensation with salicylaldehyde, 3,5-di- tert -butylsalicylaldehyde, or 5-fluorosalicylaldehyde formed tridentate, X 2 L type, Schiff base ligands. Chiral shift NMR confirmed retention of stereochemistry during synthesis. X-ray crystal structures of four of the ligands show either inter- or intramolecular hydrogen bonding interactions. The ligands coordinate to the titanium reagents Ti(NMe 2 ) 4 or TiCl(NMe 2 ) 3 by protonolysis and displacement of two equivalents of HNMe 2 . The crystal structure of one example of Ti(X 2 L)Cl(NMe 2 ) was determined and the complex has a distorted square pyramidal geometry with an axial NMe 2 ligand. The bis-dimethylamide complexes are active catalysts for the ring closing hydroamination of di- and trisubstituted aminoallenes. The reaction of hepta-4,5-dienylamine at 135 °C with 5 mol% catalyst gives a mixture of 6-ethyl-2,3,4,5-tetrahydropyridine (40–72%) and both Z - and E -2-propenyl-pyrrolidine (25–52%). The ring closing reaction of 6-methyl-hepta-4,5-dienylamine at 135 °C with 5 mol% catalyst gives exclusively 2-(2-methyl-propenyl)-pyrrolidine. The pyrrolidine products are obtained with enantiomeric excesses up to 17%. 
    more » « less