skip to main content

Title: Naturally segregating genetic variation in circadian period exhibits a regional elevational and climatic cline

Circadian clocks confer adaptation to predictable 24‐h fluctuations in the exogenous environment, but it has yet to be determined what ecological factors maintain natural genetic variation in endogenous circadian period outside of the hypothesized optimum of 24 h. We estimated quantitative genetic variation in circadian period in leaf movement in 30 natural populations of theArabidopsisrelativeBoechera strictasampled within only 1° of latitude but across an elevation gradient spanning 2460–3300 m in the Rocky Mountains. Measuring ~3800 plants from 473 maternal families (7–20 per population), we found that genetic variation was of similar magnitude among versus within populations, with population means varying between 21.9 and 24.9 h and maternal family means within populations varying by up to ~6 h. After statistically accounting for spatial autocorrelation at a habitat extreme, we found that elevation explained a significant proportion of genetic variation in the circadian period, such that higher‐elevation populations had shorter mean period lengths and reduced intrapopulation ranges. Environmental data indicate that these spatial trends could be related to steep regional climatic gradients in temperature, precipitation, and their intra‐annual variability. Our findings suggest that spatially fine‐grained environmental heterogeneity contributes to naturally occurring genetic variation in circadian traits in wild populations.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Publisher / Repository:
Date Published:
Journal Name:
Plant, Cell & Environment
Page Range / eLocation ID:
2696 to 2707
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Understanding the neutral (demographic) and adaptive processes leading to the differentiation of species and populations is a critical component of evolutionary and conservation biology. In this context, recently diverged taxa represent a unique opportunity to study the process of genetic differentiation. Northern and southern Idaho ground squirrels (Urocitellus brunneus—NIDGS, andUendemicus—SIDGS, respectively) are a recently diverged pair of sister species that have undergone dramatic declines in the last 50 years and are currently found in metapopulations across restricted spatial areas with distinct environmental pressures. Here we genotyped single‐nucleotide polymorphisms (SNPs) from buccal swabs with restriction site‐associated DNA sequencing (RADseq). With these data we evaluated neutral genetic structure at both the inter‐ and intraspecific level, and identified putatively adaptive SNPs using population structure outlier detection and genotype–environment association (GEA) analyses. At the interspecific level, we detected a clear separation between NIDGS and SIDGS, and evidence for adaptive differentiation putatively linked to torpor patterns. At the intraspecific level, we found evidence of both neutral and adaptive differentiation. For NIDGS, elevation appears to be the main driver of adaptive differentiation, while neutral variation patterns match and expand information on the low connectivity between some populations identified in previous studies using microsatellite markers. For SIDGS, neutral substructure generally reflected natural geographical barriers, while adaptive variation reflected differences in land cover and temperature, as well as elevation. These results clearly highlight the roles of neutral and adaptive processes for understanding the complexity of the processes leading to species and population differentiation, which can have important conservation implications in susceptible and threatened species.

    more » « less
  2. Abstract

    Genetic structure and phenotypic variation among populations are affected by both geographic distance and environmental variation across species' distributions. Understanding the relative contributions of isolation by distance (IBD) and isolation by environment (IBE) is important for elucidating population dynamics across habitats and ecological gradients. In this study, we compared phenotypic and genetic variation among Horned Lark (Eremophila alpestris) populations from 10 sites encompassing an elevational gradient from low‐elevation desert scrub in Death Valley (285 a.s.l.) to high‐elevation meadows in the White Mountains of the Sierra Nevada of California (greater than 3000 m a.s.l.). Using a ddRAD data set of 28,474 SNPs aligned to a high‐quality reference genome, we compared genetic structure with elevational, environmental, and spatial distance to quantify how different aspects of the landscape drive genomic and phenotypic differentiation in Horned Larks. We found larger‐bodied birds were associated with sites that had less seasonality and higher annual precipitation, and longer spurs occurred in soils with more clay and silt content, less sand, and finer fragments. Larks have large neo‐sex chromosomes, and we found that associations with elevation and environmental variation were much stronger among neo‐sex chromosomes compared to autosomes. Furthermore, we found that putative chromosomal translocations, fusions, and inversions were associated with elevation and may underlie local adaptation across an elevational gradient in Horned Larks. Our results suggest that genetic variation in Horned Larks is affected more by IBD than IBE, but specific phenotypes and genomic regions—particually on neo‐sex chromosomes—bear stronger associations with the environment.

    more » « less
  3. Abstract Evolutionary change begins at the population scale. Therefore, understanding adaptive variation requires the identification of the factors maintaining and shaping standing genetic variation at the within‐population level. Spatial and temporal environmental heterogeneity represent ecological drivers of within‐population genetic variation, determining the evolutionary trajectory of populations along with random processes. Here, we focused on the effects of spatiotemporal heterogeneity on quantitative and molecular variation in a natural population of the annual plant Arabidopsis thaliana . We sampled 1093 individuals from a Spanish A. thaliana population across an area of 7.4 ha for 10 years (2012–2021). Based on a sample of 279 maternal lines, we estimated spatiotemporal variation in life‐history traits and fitness from a common garden experiment. We genotyped 884 individuals with nuclear microsatellites to estimate spatiotemporal variation in genetic diversity. We assessed spatial patterns by estimating spatial autocorrelation of traits and fine‐scale genetic structure. We analysed the relationships between phenotypic variation, geographical location and genetic relatedness, as well as the effects of environmental suitability and genetic rarity on phenotypic variation. The common garden experiment indicated that there was more temporal than spatial variation in life‐history traits and fitness. Despite the differences among years, genetic distance in ecologically relevant traits (e.g. flowering time) tended to be positively correlated to genetic distance among maternal lines, while isolation by distance was less important. Genetic diversity exhibited significant spatial structure at short distances, which were consistent among years. Finally, genetic rarity, and not environmental suitability, accounted for genetic variation in life‐history traits. Synthesis . Our study highlighted the importance of repeated sampling to detect the large amount of genetic diversity at the quantitative and molecular levels that a single A. thaliana population can harbour. Overall, population genetic attributes estimated from our long‐term monitoring scheme (genetic relatedness and genetic rarity), rather than biological (dispersal) or ecological (vegetation types and environmental suitability) factors, emerged as the most important drivers of within‐population structure of phenotypic variation in A. thaliana . 
    more » « less
  4. Abstract Background

    Distributional responses by alpine taxa to repeated, glacial-interglacial cycles throughout the last two million years have significantly influenced the spatial genetic structure of populations. These effects have been exacerbated for the American pika (Ochotona princeps), a small alpine lagomorph constrained by thermal sensitivity and a limited dispersal capacity. As a species of conservation concern, long-term lack of gene flow has important consequences for landscape genetic structure and levels of diversity within populations. Here, we use reduced representation sequencing (ddRADseq) to provide a genome-wide perspective on patterns of genetic variation across pika populations representing distinct subspecies. To investigate how landscape and environmental features shape genetic variation, we collected genetic samples from distinct geographic regions as well as across finer spatial scales in two geographically proximate mountain ranges of eastern Nevada.


    Our genome-wide analyses corroborate range-wide, mitochondrial subspecific designations and reveal pronounced fine-scale population structure between the Ruby Mountains and East Humboldt Range of eastern Nevada. Populations in Nevada were characterized by low genetic diversity (π = 0.0006–0.0009; θW = 0.0005–0.0007) relative to populations in California (π = 0.0014–0.0019; θW = 0.0011–0.0017) and the Rocky Mountains (π = 0.0025–0.0027; θW = 0.0021–0.0024), indicating substantial genetic drift in these isolated populations. Tajima’sDwas positive for all sites (D = 0.240–0.811), consistent with recent contraction in population sizes range-wide.


    Substantial influences of geography, elevation and climate variables on genetic differentiation were also detected and may interact with the regional effects of anthropogenic climate change to force the loss of unique genetic lineages through continued population extirpations in the Great Basin and Sierra Nevada.

    more » « less
  5. Abstract

    Disentangling the effects of neutral and adaptive processes in maintaining phenotypic variation across environmental gradients is challenging in natural populations. Song sparrows (Melospiza melodia) on the California Channel Islands occupy a pronounced east‐west climate gradient within a small spatial scale, providing a unique opportunity to examine the interaction of genetic isolation (reduced gene flow) and the environment (selection) in driving variation. We used reduced representation genomic libraries to infer the role of neutral processes (drift and restricted gene flow) and divergent selection in driving variation in thermoregulatory traits with an emphasis on the mechanisms that maintain bill divergence among islands. Analyses of 22,029 neutral SNPs confirm distinct population structure by island with restricted gene flow and relatively large effective population sizes, suggesting bill differences are probably not a product of genetic drift. Instead, we found strong support for local adaptation using 3294 SNPs in differentiation‐based and environmental association analyses coupled with genome‐wide association tests. Specifically, we identified several putatively adaptive and candidate loci in or near genes involved in bill development pathways (e.g.,BMP,CaM,Wnt), confirming the highly complex and polygenic architecture underlying bill morphology. Furthermore, we found divergence in genes associated with other thermoregulatory traits (i.e., feather structure, plumage colour, and physiology). Collectively, these results suggest strong divergent selection across an island archipelago results in genomic changes in a suite of traits associated with climate adaptation over small spatial scales. Future research should move beyond studying univariate traits to better understand multidimensional responses to complex environmental conditions.

    more » « less