skip to main content


Title: Deriving Gridded Hourly Rainfall on O‘ahu by Combining Gauge and Radar Rainfall
Abstract

High temporal and spatial resolution precipitation datasets are essential for hydrological and flood modeling to assist water resource management and emergency responses, particularly for small watersheds, such as those in Hawai‘i in the United States. Unfortunately, fine temporal (subdaily) and spatial (<1 km) resolutions of rainfall datasets are not always readily available for applications. Radar provides indirect measurements of the rain rate over a large spatial extent with a reasonable temporal resolution, while rain gauges provide “ground truth.” There are potential advantages to combining the two, which have not been fully explored in tropical islands. In this study, we applied kriging with external drift (KED) to integrate hourly gauge and radar rainfall into a 250 m × 250 m gridded dataset for the tropical island of O‘ahu. The results were validated with leave-one-out cross validation for 18 severe storm events, including five different storm types (e.g., tropical cyclone, cold front, upper-level trough, kona low, and a mix of upper-level trough and kona low), and different rainfall structures (e.g., stratiform and convective). KED-merged rainfall estimates outperformed both the radar-only and gauge-only datasets by 1) reducing the error from radar rainfall and 2) improving the underestimation issues from gauge rainfall, especially during convective rainfall. We confirmed the KED method can be used to merge radar with gauge data to generate reliable rainfall estimates, particularly for storm events, on mountainous tropical islands. In addition, KED rainfall estimates were consistently more accurate in depicting spatial distribution and maximum rainfall value within various storm types and rainfall structures.

Significance Statement

The results of this study show the effectiveness of utilizing kriging with external drift (KED) in merging gauge and radar rainfall data to produce highly accurate, reliable rainfall estimates in mountainous tropical regions, such as O‘ahu. The validated KED dataset, with its high temporal and spatial resolutions, offers a valuable resource for various types of rainfall-related research, particularly for extreme weather response and rainfall intensity analyses in Hawai’i. Our findings improve the accuracy of rainfall estimates and contribute to a deeper understanding of the performance of various rainfall estimation methods under different storm types and rainfall structures in a mountainous tropical setting.

 
more » « less
NSF-PAR ID:
10474132
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Hydrometeorology
Volume:
24
Issue:
12
ISSN:
1525-755X
Format(s):
Medium: X Size: p. 2239-2257
Size(s):
p. 2239-2257
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Tropical islands are simultaneously some of the most biodiverse and vulnerable places on Earth. Water resources help maintain the delicate balance on which the ecosystems and the population of tropical islands rely. Hydrogen and oxygen isotope analyses are a powerful tool in the study of the water cycle on tropical islands, although the scarcity of long-term and high-frequency data makes interpretation challenging. Here, a new dataset is presented based on weekly collection of rainfall H and O isotopic composition on the island of O‘ahu, Hawai‘i, beginning from July 2019 and still ongoing. The data show considerable differences in isotopic ratios produced by different weather systems, with Kona lows and upper-level lows having the lowest δ 2 H and δ 18 O values, and trade-wind showers the highest. The data also show significant spatial variability, with some sites being characterized by higher isotope ratios than others. The amount effect is not observed consistently at all sites. Deuterium excess shows a marked seasonal cycle, which is attributed to the different origin and history of the air masses that are responsible for rainfall in the winter and summer months. The local meteoric water line and a comparison of this dataset with a long-term historical record illustrate strong interannual variability and the need to establish a long-term precipitation isotope monitoring network for Hawai‘i. Significance Statement The isotopic composition of water is often used in the study of island water resources, but the scarcity of high-frequency datasets makes the interpretation of data difficult. The purpose of this study is to investigate the isotopic composition of rainfall on a mountainous island in the subtropics. Based on weekly data collection on O‘ahu, Hawai‘i, the results improve our understanding of the isotopic composition of rainfall due to different weather systems, like trade-wind showers or cold fronts, as well as its spatial and temporal variability. These results could inform the interpretation of data from other mountainous islands in similar climate zones. 
    more » « less
  2. Many radar-gauge merging methods have been developed to produce improved rainfall data by leveraging the advantages of gauge and radar observations. Two popular merging methods, Regression Kriging and Bayesian Regression Kriging were utilized and compared in this study to produce hourly rainfall data from gauge networks and multi-source radar datasets. The authors collected, processed, and modeled the gauge and radar rainfall data (Stage IV, MRMS and RTMA radar data) of the two extreme storm events (i.e., Hurricane Harvey in 2017 and Tropical Storm Imelda in 2019) occurring in the coastal area in Southeast Texas with devastating flooding. The analysis of the modeled data on consideration of statistical metrics, physical rationality, and computational expenses, implies that while both methods can effectively improve the radar rainfall data, the Regression Kriging model demonstrates its superior performance over that of the Bayesian Regression Kriging model since the latter is found to be prone to overfitting issues due to the clustered gauge distributions. Moreover, the spatial resolution of rainfall data is found to affect the merging results significantly, where the Bayesian Regression Kriging model works unskillfully when radar rainfall data with a coarser resolution is used. The study recommends the use of high-quality radar data with properly spatial-interpolated gauge data to improve the radar-gauge merging methods. The authors believe that the findings of the study are critical for assisting hazard mitigation and future design improvement. 
    more » « less
  3. Abstract

    On 1 September 2021, the remnants of Hurricane Ida transformed into a lethal variant of tropical cyclone in which unprecedented short‐duration rainfall from clusters of supercells produced catastrophic flooding in watersheds of the Northeastern US. Short‐duration rainfall extremes from Ida are examined through analyses of polarimetric radar fields and rain gauge observations. Rainfall estimates are constructed from a polarimetric rainfall algorithm that is grounded in specific differential phase shift (KDP) fields. Rainfall accumulations at multiple locations exceed 1000‐year values for 1–3 hr time scales. Radar observations show that supercells are the principal agents of rainfall extremes. Record flood peaks occurred throughout the eastern Pennsylvania—New Jersey region; the peak discharge of the Elizabeth River is one of the most extreme in the eastern US, based on the ratio of the peak discharge to the sample 10‐year flood at the gaging station. As with other tropical cyclones that have produced record flooding in the Northeastern US, Extratropical Transition was a key element of extreme rainfall and flooding from Ida. Tropical and extratropical elements of the storm system contributed to extremes of atmospheric water balance variables and Convective Available Potential Energy, providing the environment for extreme short‐duration rainfall from supercells.

     
    more » « less
  4. Abstract

    With increasing needs for understanding historic climatic events and assessing changes in extreme weather to support natural hazard planning and infrastructure design, it is vital to have an accurate long-term hourly rainfall dataset. In Hawaiʻi, annual, monthly, and daily gauge data have been well-compiled and are accessible. Here, we compiled hourly rainfall data from both gauges and radars. We arranged the metadata from various data sources, acquired data, and applied quality control to each gauge dataset. In addition, we compiled and provided hourly radar rainfall, and filtered out areas with low confidence (larger error). This paper provides (1) a summary of available hourly data from various observation networks, (2) 293-gauge rainfall data from their installation date to the end of 2020, and (3) a 5-year 0.005° by 0.005° (~250 × 250 m2) gridded radar rainfall dataset between 2016 and 2020 across the Hawaiian Islands.

     
    more » « less
  5. Abstract Tropical cyclone (TC) rainfall hazard assessment is subject to the bias in TC climatology estimation from climate simulations or synthetic downscaling. In this study, we investigate the uncertainty in TC rainfall hazard assessment induced by this bias using both rain gauge and radar observations and synthetic-storm-model-coupled TC rainfall simulations. We identify the storm’s maximum intensity, impact duration, and minimal distance to the site to be the three most important storm parameters for TC rainfall hazard, and the relationship between the important storm parameters and TC rainfall can be well captured by a physics-based TC rainfall model. The uncertainty in the synthetic rainfall hazard induced by the bias in TC climatology can be largely explained by the bias in the important storm parameters simulated by the synthetic storm model. Correcting the distribution of the most biased parameter may significantly improve rainfall hazard estimation. Bias correction based on the joint distribution of the important parameters may render more accurate rainfall hazard estimations; however, the general technical difficulties in resampling from high dimensional joint probability distributions prevent more accurate estimations in some cases. The results of the study also support future investigation of the impact of climate change on TC rainfall hazards through the lens of future changes in the identified important storm parameters. 
    more » « less