skip to main content


Title: Elusive Iron: Detection of the FeC Radical (X 3 Δ i ) in the Envelope of IRC+10216
Abstract

A new interstellar molecule, FeC (X3Δi), has been identified in the circumstellar envelope of the carbon-rich asymptotic giant branch star IRC+10216. FeC is the second iron-bearing species conclusively observed in the interstellar medium, in addition to FeCN, also found in IRC+10216. TheJ= 4 → 3, 5 → 4, and 6 → 5 rotational transitions of this free radical near 160, 201, and 241 GHz, respectively, were detected in the lowest spin–orbit ladder, Ω = 3, using the Submillimeter Telescope of the Arizona Radio Observatory (ARO) for the 1 mm lines and the ARO 12 m at 2 mm. Because the ground state of FeC is inverted, these transitions are the lowest energy lines. The detected features exhibit slight U shapes with LSR velocities nearVLSR≈ −26 km s−1and linewidths of ΔV1/2≈ 30 km s−1, line parameters characteristic of IRC+10216. Radiative transfer modeling of FeC suggests that the molecule has a shell distribution with peak radius near 300R*(∼6″) extending out to ∼500R*(∼10″) and a fractional abundance, relative to H2, off∼ 6 × 10−11. The previous FeCN spectra were also modeled, yielding an abundance off∼ 8 × 10−11in a larger shell situated near 800R*. These distributions suggest that FeC may be the precursor species for FeCN. Unlike cyanides and carbon-chain molecules, diatomic carbides with a metallic element are rare in IRC+10216, with FeC being the first such detection.

 
more » « less
Award ID(s):
1907910
NSF-PAR ID:
10474166
Author(s) / Creator(s):
;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
958
Issue:
1
ISSN:
2041-8205
Format(s):
Medium: X Size: Article No. L6
Size(s):
["Article No. L6"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The millimeter-wave spectrum of the SiP radical (X2Πi) has been measured in the laboratory for the first time using direct-absorption methods. SiP was created by the reaction of phosphorus vapor and SiH4in argon in an AC discharge. Fifteen rotational transitions (J+ 1 ←J) were measured for SiP in the Ω = 3/2 ladder in the frequency range 151–533 GHz, and rotational, lambda doubling, and phosphorus hyperfine constants determined. Based on the laboratory measurements, SiP was detected in the circumstellar shell of IRC+10216, using the Submillimeter Telescope and the 12 m antenna of the Arizona Radio Observatory at 1 mm and 2 mm, respectively. Eight transitions of SiP were searched: four were completely obscured by stronger features, two were uncontaminated (J= 13.5 → 12.5 and 16.5 → 15.5), and two were partially blended with other lines (J= 8.5 → 7.5 and 17.5 → 16.5). The SiP line profiles were broader than expected for IRC+10216, consistent with the hyperfine splitting. From non-LTE radiative transfer modeling, SiP was found to have a shell distribution with a radius ∼300R*, and an abundance, relative to H2, off∼ 2 × 10−9. From additional modeling, abundances of 7 × 10−9and 9 × 10−10were determined for CP and PN, respectively, both located in shells at 550–650R*. SiP may be formed from grain destruction, which liberates both phosphorus and silicon into the gas phase, and then is channeled into other P-bearing molecules such as PN and CP.

     
    more » « less
  2. Abstract

    We report the detection of magnesium dicarbide, MgC2, in the laboratory at centimeter wavelengths and assign24MgC2,25MgC2, and26MgC2to 14 unidentified lines in the radio spectrum of the circumstellar envelope of the evolved carbon star IRC+10216. The structure of MgC2is found to be T-shaped with a highly ionic bond between the metal atom and the C2unit, analogous to other dicarbides containing electropositive elements. A two-temperature excitation model of the MgC2emission lines observed in IRC+10216 yields a very low rotational temperature of 6 ± 1 K, a kinetic temperature of 22 ± 13 K, and a column density of (1.0 ± 0.3) × 1012cm−2. The abundance of MgC2relative to the magnesium–carbon chains MgCCH, MgC4H, and MgC6H is 1:2:22:20 and provides a new constraint on the sequential radiative association–dissociative recombination mechanisms implicated in the production of metal-bearing molecules in circumstellar environments.

     
    more » « less
  3. New computational and experimental studies have been carried out for the MgCCH radical in its X2Σ+ state. Coupled cluster theory with single, double, and perturbative triples, CCSD(T), was used in conjunction with post-CCSD(T) and scalar relativistic additive corrections to compute vibrational quartic force fields for this molecule. From the quartic force fields, higher-order spectroscopic properties, including rotational constants, were obtained. In tandem, the five lowest energy rotational transitions for MgCCH, N = 1→0 through N = 5→4, were measured for the first time using Fourier transform microwave/millimeter wave methods in the frequency range 9 -50 GHz. The radical was created in the Discharge Assisted Laser Ablation Source (DALAS) developed in the Ziurys group. A combined fit of these data with previous millimeter direct absorption measurements have yielded the most accurate rotational constants for MgCCH to date. The computed principle rotational constant lies within 1.51-1.65 MHz of the experimental one, validating the computational approach. High-level theory was then applied to produce accurate rovibrational spectroscopic constants for MgCCH+, including a rotational constant of B0 = 5354.5–5359.5 MHz.. These new predictions will further the experimental study of MgCCH+, and aid in the low-temperature characterization of MgCCH, detected towards the circumstellar shell of IRC+10216, a carbon-rich star. 
    more » « less
  4. Abstract Observations of HCN and HCO + have been carried out toward 13 planetary nebulae (PNe) using the facilities of the Arizona Radio Observatory (ARO). These nebulae represent a wide range of morphologies and ages (∼2000–28,000 yr). For both molecules, the J = 1 → 0 transitions at 88–89 GHz and the J = 3 → 2 lines at 265–267 GHz were measured, together with CO lines ( J = 1 → 0, 2 → 1, and 3 → 2, depending on the source), using the ARO 12 m and Submillimeter Telescopes. HCN and HCO + were detected with at least one transition in 10 nebulae: He 2-459, Hu 1-1, K3-52, K3-65, M1-8, M1-40, M1-59, M2-53, M4-17, and NGC 6445. HCO + was additionally identified via two transitions in Na 2. Some observed line profiles were complex, with multiple velocity components tracing varied outflows. From radiative transfer modeling, column densities were established for HCN and HCO + : N tot (HCN) = 0.005–1.1 × 10 14 and N tot (HCO + ) = 0.008–9.5 × 10 13 cm −2 . Gas densities of n (H 2 ) ∼ 10 5 –10 7 cm −3 were also determined for all PNe. Fractional abundances with respect to H 2 , calculated using CO as a proxy, are f (HCN) ∼ 0.2–1.5 × 10 −7 and f (HCO + ) ∼ 0.3–5.1 × 10 −8 . The abundances of HCN and HCO + did not significantly vary with nebular age to 28,000 yr. Combined with previous observations, at least 30 PNe contain HCN and/or HCO + , indicating that polyatomic molecules are common constituents of these objects. The data strongly support a scenario where dense ejecta from PNe seed the interstellar medium with molecular material. 
    more » « less
  5. Water vapor (H2O) is one of the brightest molecular emitters after carbon monoxide (CO) in galaxies with high infrared (IR) luminosity, allowing us to investigate the warm and dense phase of the interstellar medium (ISM) where star formation occurs. However, due to the complexity of its radiative spectrum, H2O is not frequently exploited as an ISM tracer in distant galaxies. Therefore, H2O studies of the warm and dense gas at high-zremain largely unexplored. In this work, we present observations conducted with the Northern Extended Millimeter Array (NOEMA) toward threez > 6 IR-bright quasarsJ2310+1855,J1148+5251, andJ0439+1634targeted in their multiple para- and ortho-H2O transitions (312 − 303, 111 − 000, 220 − 211, and 422 − 413), as well as their far-IR (FIR) dust continuum. By combining our data with previous measurements from the literature, we estimated the dust masses and temperatures, continuum optical depths, IR luminosities, and star formation rates (SFR) from the FIR continuum. We modeled the H2O lines using the MOLPOP-CEP radiative transfer code, finding that water vapor lines in our quasar host galaxies are primarily excited in the warm, dense (with a gas kinetic temperature and density ofTkin = 50 K,nH2 ∼ 104.5 − 105 cm−3) molecular medium with a water vapor column density ofNH2O ∼ 2 × 1017 − 3 × 1018 cm−3. High-JH2O lines are mainly radiatively pumped by the intense optically-thin far-IR radiation field associated with a warm dust component at temperatures ofTdust ∼ 80 − 190 K that account for < 5 − 10% of the total dust mass. In the case of J2310+1855, our analysis points to a relatively high value of the continuum optical depth at 100 μm (τ100 ∼ 1). Our results are in agreement with expectations based on the H2O spectral line energy distribution of local and high-zultra-luminous IR galaxies and active galactic nuclei (AGN). The analysis of the Boltzmann diagrams highlights the interplay between collisions and IR pumping in populating the high H2O energy levels and it allows us to directly compare the excitation conditions in the targeted quasar host galaxies. In addition, the observations enable us to sample the high-luminosity part of the H2O–total-IR (TIR) luminosity relations (LH2O − LTIR). Overall, our results point to supralinear trends that suggest H2O–TIR relations are likely driven by IR pumping, rather than the mere co-spatiality between the FIR continuum- and line-emitting regions. The observedLH2O/LTIRratios in ourz > 6 quasars do not show any strong deviations with respect to those measured in star-forming galaxies and AGN at lower redshifts. This supports the notion that H2O can be likely used to trace the star formation activity buried deep within the dense molecular clouds.

     
    more » « less