skip to main content


This content will become publicly available on September 5, 2024

Title: Watershed-scale provenance heterogeneity within Eocene nonmarine basin fill: Southern Greater Green River Basin, western USA
Weathering, erosion, and sediment transport in modern landscapes may be investigated via direct observation of attributes such as elevation, relief, bedrock lithology, climate, drainage organization, watershed extent, and others. Studies of ancient landscape evolution lack this synoptic perspective, however, and instead must rely more heavily on downstream records of fluvial deposits. Provenance analysis based on detrital grain ages has greatly enhanced the utility of such records but has often focused broadly on regional to continental scales. This approach may overlook important details of localized watersheds, which could lead to significant misinterpretation of past sediment dispersal patterns. The present study, therefore, explores the impact of geographic and stratigraphic sampling density on detrital zircon provenance, based on a high-density investigation of U-Pb ages (N = 23, n = 4905) obtained from a narrow chronostratigraphic range (∼2 m.y.) within a relatively small (∼25,000 km2) area of an Eocene nonmarine sedimentary basin. Based on multi-dimensional scaling and DZmix modeling, these strata comprise seven distinct, approximately isochronous detrital zircon (DZ) chronofacies, defined as “. . . a group of sedimentary rocks that contains a specified suite of detrital zircon age populations” (Lawton et al., 2010). Four of these DZ chronofacies reflect long-distance transport from extrabasinal source areas. DZ chronofacies CO-1 and CO-2 are interpreted to derive from a primary sediment source in central Colorado (USA), corroborating previously proposed long-distance sediment transport via the Aspen paleoriver. DZ chronofacies ID-1 and ID-2 are interpreted to have been delivered to the basin from central Idaho by the Idaho paleoriver. In contrast, DZ chronofacies UT-1 and UT-2 are interpreted to reflect local drainage from the Uinta Uplift south of the basin, and DZ chronofacies WY-1 is interpreted to have been sourced from the Rawlins, Granite, and Sierra Madre uplifts to the north and east via the Toya Puki paleoriver. Lateral transitions between different DZ chronofacies in some cases occur over distances as little as 5 km, implying that depositional systems carrying sand from disparate watersheds directly competed to fill available basin accommodation. The results of this study reveal a high degree of complexity of Eocene rivers that converged on the Greater Green River Basin, indicating that their deposits contain a rich record of fine-scale landscape evolution across much of the Laramide foreland and Cordilleran orogen. These results illustrate the need for adequate sample density when assessing basin-scale provenance and offer a cautionary consideration for researchers using sandstone (and incorporated authigenic cement) in other nonmarine basins as the basis for paleoaltimetry or detrital thermochronology studies.

 
more » « less
Award ID(s):
1813350
NSF-PAR ID:
10474246
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Geological Society of America Bulletin
Date Published:
Journal Name:
Geological Society of America Bulletin
ISSN:
0016-7606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Alaska Range suture zone exposes Cretaceous to Quaternary marine and nonmarine sedimentary and volcanic rocks sandwiched between oceanic rocks of the accreted Wrangellia composite terrane to the south and older continental terranes to the north. New U-Pb zircon ages, 40Ar/39Ar, ZHe, and AFT cooling ages, geochemical compositions, and geological field observations from these rocks provide improved constraints on the timing of Cretaceous to Miocene magmatism, sedimentation, and deformation within the collisional suture zone. Our results bear on the unclear displacement history of the seismically active Denali fault, which bisects the suture zone. Newly identified tuffs north of the Denali fault in sedimentary strata of the Cantwell Formation yield ca. 72 to ca. 68 Ma U-Pb zircon ages. Lavas sampled south of the Denali fault yield ca. 69 Ma 40Ar/39Ar ages and geochemical compositions typical of arc assemblages, ranging from basalt-andesite-trachyte, relatively high-K, and high concentrations of incompatible elements attributed to slab contribution (e.g., high Cs, Ba, and Th). The Late Cretaceous lavas and bentonites, together with regionally extensive coeval calc-alkaline plutons, record arc magmatism during contractional deformation and metamorphism within the suture zone. Latest Cretaceous volcanic and sedimentary strata are locally overlain by Eocene Teklanika Formation volcanic rocks with geochemical compositions transitional between arc and intraplate affinity. New detrital-zircon data from the modern Teklanika River indicate peak Teklanika volcanism at ca. 57 Ma, which is also reflected in zircon Pb loss in Cantwell Formation bentonites. Teklanika Formation volcanism may reflect hypothesized slab break-off and a Paleocene–Eocene period of a transform margin configuration. Mafic dike swarms were emplaced along the Denali fault from ca. 38 to ca. 25 Ma based on new 40Ar/39Ar ages. Diking along the Denali fault may have been localized by strike-slip extension following a change in direction of the subducting oceanic plate beneath southern Alaska from N-NE to NW at ca. 46–40 Ma. Diking represents the last recorded episode of significant magmatism in the central and eastern Alaska Range, including along the Denali fault. Two tectonic models may explain emplacement of more primitive and less extensive Eocene–Oligocene magmas: delamination of the Late Cretaceous–Paleocene arc root and/or thickened suture zone lithosphere, or a slab window created during possible Paleocene slab break-off. Fluvial strata exposed just south of the Denali fault in the central Alaska Range record synorogenic sedimentation coeval with diking and inferred strike-slip displacement. Deposition occurred ca. 29 Ma based on palynomorphs and the youngest detrital zircons. U-Pb detrital-zircon geochronology and clast compositional data indicate the fluvial strata were derived from sedimentary and igneous bedrock presently exposed within the Alaska Range, including Cretaceous sources presently exposed on the opposite (north) side of the fault. The provenance data may indicate ~150 km or more of dextral offset of the ca. 29 Ma strata from inferred sediment sources, but different amounts of slip are feasible. Together, the dike swarms and fluvial strata are interpreted to record Oligocene strike-slip movement along the Denali fault system, coeval with strike-slip basin development along other segments of the fault. Diking and sedimentation occurred just prior to the onset of rapid and persistent exhumation ca. 25 Ma across the Alaska Range. This phase of reactivation of the suture zone is interpreted to reflect the translation along and convergence of southern Alaska across the Denali fault driven by highly coupled flat-slab subduction of the Yakutat microplate, which continues to accrete to the southern margin of Alaska. Furthermore, a change in Pacific plate direction and velocity at ca. 25 Ma created a more convergent regime along the apex of the Denali fault curve, likely contributing to the shutting off of near-fault extension- facilitated arc magmatism along this section of the fault system and increased exhumation rates. 
    more » « less
  2. As atmospheric carbon dioxide (CO2) and temperatures increase with modern climate change, ancient hothouse periods become a focal point for understanding ecosystem function under similar conditions. The early Eocene exhibited high temperatures, high CO2 levels, and similar tectonic plate configuration as today, so it has been invoked as an analog to modern climate change. During the early Eocene, the greater Green River Basin (GGRB) of southwestern Wyoming was covered by an ancient hypersaline lake (Lake Gosiute; Green River Formation) and associated fluvial and floodplain systems (Wasatch and Bridger formations). The volcaniclastic Bridger Formation was deposited by an inland delta that drained from the northwest into freshwater Lake Gosiute and is known for its vast paleontological assemblages. Using this well-preserved basin deposited during a period of tectonic and paleoclimatic interest, we employ multiple proxies to study trends in provenance, parent material, weathering, and climate throughout 1 million years. The Blue Rim escarpment exposes approximately 100 m of the lower Bridger Formation, which includes plant and mammal fossils, solitary paleosol profiles, and organic remains suitable for geochemical analyses, as well as ash beds and volcaniclastic sandstone beds suitable for radioisotopic dating. New 40Ar/39Ar ages from the middle and top of the Blue Rim escarpment constrain the age of its strata to ∼ 49.5–48.5 Myr ago during the “falling limb” of the early Eocene Climatic Optimum. We used several geochemical tools to study provenance and parent material in both the paleosols and the associated sediments and found no change in sediment input source despite significant variation in sedimentary facies and organic carbon burial. We also reconstructed environmental conditions, including temperature, precipitation (both from paleosols), and the isotopic composition of atmospheric CO2 from plants found in the floral assemblages. Results from paleosol-based reconstructions were compared to semi-co-temporal reconstructions made using leaf physiognomic techniques and marine proxies. The paleosol-based reconstructions (near the base of the section) of precipitation (608–1167 mm yr−1) and temperature (10.4 to 12.0 ∘C) were within error of, although lower than, those based on floral assemblages, which were stratigraphically higher in the section and represented a highly preserved event later in time. Geochemistry and detrital feldspar geochronology indicate a consistent provenance for Blue Rim sediments, sourcing predominantly from the Idaho paleoriver, which drained the active Challis volcanic field. Thus, because there was neither significant climatic change nor significant provenance change, variation in sedimentary facies and organic carbon burial likely reflected localized geomorphic controls and the relative height of the water table. The ecosystem can be characterized as a wet, subtropical-like forest (i.e., paratropical) throughout the interval based upon the floral humidity province and Holdridge life zone schemes. Given the mid-paleolatitude position of the Blue Rim escarpment, those results are consistent with marine proxies that indicate that globally warm climatic conditions continued beyond the peak warm conditions of the early Eocene Climatic Optimum. The reconstructed atmospheric δ13C value (−5.3 ‰ to −5.8 ‰) closely matches the independently reconstructed value from marine microfossils (−5.4 ‰), which provides confidence in this reconstruction. Likewise, the isotopic composition reconstructed matches the mantle most closely (−5.4 ‰), agreeing with other postulations that warming was maintained by volcanic outgassing rather than a much more isotopically depleted source, such as methane hydrates. 
    more » « less
  3. Abstract

    The north–south trending, Late Cretaceous to modern Magallanes–Austral foreland basin of southernmost Patagonia lacks a unified, radiometric, age‐controlled stratigraphic framework. By simplifying the sedimentary fill of the basin to deep‐marine, shallow‐marine and terrestrial deposits, and combining 13 new U‐Pb detrital zircon maximum depositional ages (DZ MDAs) with publishedDZ MDAs and U‐Pb ash ages, we provide the first attempt at a unified, longitudinal stratigraphic framework constrained by radiometric age controls. We divide the foreland basin history into two phases, including (1) an initial Late Cretaceous shoaling upward phase and (2) a Cenozoic phase that overlies a Palaeogene unconformity. NewDZsamples from the shallow‐marine La Anita Formation, the terrestrial Cerro Fortaleza Formation and several previously unrecognized Cenozoic units provide necessary radiometric age controls for the end of the Late Cretaceous foreland phase and the magnitude of the Palaeogene unconformity in the Austral sector of the basin. These samples show that the La Anita and Cerro Fortaleza Formations have CampanianDZ MDAs, and that overlying Cenozoic strata have Eocene to MioceneDZ MDAs. By filling this data gap, we are able to provide a first attempt at constructing a basinwide, age‐controlled stratigraphic framework for the Magallanes–Austral foreland basin. Results show southward progradation of shallow marine and terrestrial environments from the Santonian through the Maastrichtian, as well as a northward increase in the magnitude of the Palaeogene unconformity. Furthermore, our new age data significantly impact the chronology of fossil flora and dinosaur faunas in Patagonia.

     
    more » « less
  4. The Green River Formation of Wyoming, USA, is host to the world’s largest known lacustrine sodium carbonate deposits, which accumulated in a closed basin during the early Eocene greenhouse. Alkaline brines are hypothesized to have been delivered to ancient Gosiute Lake by the Aspen paleoriver that flowed from the Colorado Mineral Belt. To precisely trace fluvial provenance in the resulting deposits, we conducted X-ray fluorescence analyses and petrographic studies across a suite of well-dated sandstone marker beds of the Wilkins Peak Member of the Green River Formation. Principal component analysis reveals strong correlation among elemental abundances, grain composition, and sedimentary lithofacies. To isolate a detrital signal, elements least affected by authigenic minerals, weathering, and other processes were included in a principal component analysis, the results of which are consistent with petrographic sandstone modes and detrital zircon chronofacies of the basin. Sandstone marker beds formed during eccentricity-paced lacustrine lowstands and record the migration of fluvial distributary channel networks from multiple catchments around a migrating depocenter, including two major paleorivers. The depositional topography of these convergent fluvial fans would have inversely defined bathymetric lows during subsequent phases of lacustrine inundation, locations where trona could accumulate below a thermocline. Provenance mapping verifies fluvial connectivity to the Aspen paleoriver and to sources of alkalinity in the Colorado Mineral Belt across Wilkins Peak Member deposition, and shows that the greatest volumes of sediment were delivered from the Aspen paleoriver during deposition of marker beds A, B, D, and I, each of which were deposited coincident with prominent “hyperthermal” isotopic excursions documented in oceanic cores. 
    more » « less
  5. The Nutzotin basin of eastern Alaska consists of Upper Jurassic through Lower Cretaceous siliciclastic sedimentary and volcanic rocks that depositionally overlie the inboard margin of Wrangellia, an accreted oceanic plateau. We present igneous geochronologic data from volcanic rocks and detrital geochronologic and paleontological data from nonmarine sedimentary strata that provide constraints on the timing of deposition and sediment provenance. We also report geochronologic data from a dike injected into the Totschunda fault zone, which provides constraints on the timing of intra–suture zone basinal deformation. The Beaver Lake formation is an important sedimentary succession in the northwestern Cordillera because it provides an exceptionally rare stratigraphic record of the transition from marine to nonmarine depositional conditions along the inboard margin of the Insular terranes during mid-Cretaceous time. Conglomerate, volcanic-lithic sandstone, and carbonaceous mudstone/shale accumulated in fluvial channel-bar complexes and vegetated overbank areas, as evidenced by lithofacies data, the terrestrial nature of recovered kerogen and palynomorph assemblages, and terrestrial macrofossil remains of ferns and conifers. Sediment was eroded mainly from proximal sources of upper Jurassic to lower Cretaceous igneous rocks, given the dominance of detrital zircon and amphibole grains of that age, plus conglomerate with chiefly volcanic and plutonic clasts. Deposition was occurring by ca. 117 Ma and ceased by ca. 98 Ma, judging from palynomorphs, the youngest detrital ages, and ages of crosscutting intrusions and underlying lavas of the Chisana Formation. Following deposition, the basin fill was deformed, partly eroded, and displaced laterally by dextral displacement along the Totschunda fault, which bisects the Nutzotin basin. The Totschunda fault initiated by ca. 114 Ma, as constrained by the injection of an alkali feldspar syenite dike into the Totschunda fault zone. These results support previous interpretations that upper Jurassic to lower Cretaceous strata in the Nutzotin basin accumulated along the inboard margin of Wrangellia in a marine basin that was deformed during mid-Cretaceous time. The shift to terrestrial sedimentation overlapped with crustal-scale intrabasinal deformation of Wrangellia, based on previous studies along the Lost Creek fault and our new data from the Totschunda fault. Together, the geologic evidence for shortening and terrestrial deposition is interpreted to reflect accretion/suturing of the Insular terranes against inboard terranes. Our results also constrain the age of previously reported dinosaur footprints to ca. 117 Ma to ca. 98 Ma, which represent the only dinosaur fossils reported from eastern Alaska. 
    more » « less