skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High-resolution X-ray fluorescence-based provenance mapping of Eocene fluvial distributary fans that fed ancient Gosiute Lake, Wyoming, USA
Abstract The Green River Formation of Wyoming, USA, is host to the world’s largest known lacustrine sodium carbonate deposits, which accumulated in a closed basin during the early Eocene greenhouse. Alkaline brines are hypothesized to have been delivered to ancient Gosiute Lake by the Aspen paleoriver that flowed from the Colorado Mineral Belt. To precisely trace fluvial provenance in the resulting deposits, we conducted X-ray fluorescence analyses and petrographic studies across a suite of well-dated sandstone marker beds of the Wilkins Peak Member of the Green River Formation. Principal component analysis reveals strong correlation among elemental abundances, grain composition, and sedimentary lithofacies. To isolate a detrital signal, elements least affected by authigenic minerals, weathering, and other processes were included in a principal component analysis, the results of which are consistent with petrographic sandstone modes and detrital zircon chronofacies of the basin. Sandstone marker beds formed during eccentricity-paced lacustrine lowstands and record the migration of fluvial distributary channel networks from multiple catchments around a migrating depocenter, including two major paleorivers. The depositional topography of these convergent fluvial fans would have inversely defined bathymetric lows during subsequent phases of lacustrine inundation, locations where trona could accumulate below a thermocline. Provenance mapping verifies fluvial connectivity to the Aspen paleoriver and to sources of alkalinity in the Colorado Mineral Belt across Wilkins Peak Member deposition, and shows that the greatest volumes of sediment were delivered from the Aspen paleoriver during deposition of marker beds A, B, D, and I, each of which were deposited coincident with prominent “hyperthermal” isotopic excursions documented in oceanic cores.  more » « less
Award ID(s):
1813278 1812741
PAR ID:
10543780
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Geological Society of America Bulletin
Date Published:
Journal Name:
Geological Society of America Bulletin
Edition / Version:
NA
Volume:
136
Issue:
7-8
ISSN:
0016-7606
Page Range / eLocation ID:
2831 to 2844
Format(s):
Medium: X Size: 4.6MB Other: NA
Size(s):
4.6MB
Sponsoring Org:
National Science Foundation
More Like this
  1. The Green River Formation of Wyoming, USA, is host to the world’s largest known lacustrine sodium carbonate deposits, which accumulated in a closed basin during the early Eocene greenhouse. Alkaline brines are hypothesized to have been delivered to ancient Gosiute Lake by the Aspen paleoriver that flowed from the Colorado Mineral Belt. To precisely trace fluvial provenance in the resulting deposits, we conducted X-ray fluorescence analyses and petrographic studies across a suite of well-dated sandstone marker beds of the Wilkins Peak Member of the Green River Formation. Principal component analysis reveals strong correlation among elemental abundances, grain composition, and sedimentary lithofacies. To isolate a detrital signal, elements least affected by authigenic minerals, weathering, and other processes were included in a principal component analysis, the results of which are consistent with petrographic sandstone modes and detrital zircon chronofacies of the basin. Sandstone marker beds formed during eccentricity-paced lacustrine lowstands and record the migration of fluvial distributary channel networks from multiple catchments around a migrating depocenter, including two major paleorivers. The depositional topography of these convergent fluvial fans would have inversely defined bathymetric lows during subsequent phases of lacustrine inundation, locations where trona could accumulate below a thermocline. Provenance mapping verifies fluvial connectivity to the Aspen paleoriver and to sources of alkalinity in the Colorado Mineral Belt across Wilkins Peak Member deposition, and shows that the greatest volumes of sediment were delivered from the Aspen paleoriver during deposition of marker beds A, B, D, and I, each of which were deposited coincident with prominent “hyperthermal” isotopic excursions documented in oceanic cores. 
    more » « less
  2. Lacustrine chemical sediments of the Wilkins Peak Member, Eocene Green River Formation potentially preserve paleoclimate information relating to the conditions of their formation and preservation within the lake basin during the Early Eocene Climatic Optimum. The Green River Formation comprises the world’s largest sodium-carbonate evaporite deposit in the form of trona (Na2CO3⋅NaHCO3⋅2H2O) in the Bridger sub-basin and nahcolite (NaHCO3) in the neighboring Piceance Creek basin. Modern analogues suggest that these minerals necessitate the existence of an alkaline source water. Detrital provenance geochronometers suggest that the most likely source for volcanic waters to the Greater Green River Basin is the Colorado Mineral Belt, connected to the basin via the Aspen paleo-river. We tested the hypothesis that magmatic waters from the Colorado Mineral Belt could have supplied the Greater Green River Basin with the alkalinity needed to precipitate sodium-carbonate evaporites that are preserved in the Wilkins Peak Member by numerically simulating the evaporation of modern soda spring waters from northwestern Colorado at various temperature and atmospheric pCO2 conditions. We compare the resulting simulated evaporite sequences of the modern soda spring waters to the mineralogy preserved within the Wilkins Peak Member. Simulated evaporation of Steamboat Springs water produces the closest match to core observations and mineralogy. These simulations provide constraints on the salinities at which various minerals precipitated in the Wilkins Peak Member as well as insights into the regional temperature (>15ºC for gaylussite and trona; >27º for pirssonite and trona) and pCO2 conditions (<1200ppm for gaylussite and trona) during the EECO. 
    more » « less
  3. Deposition of trona, nahcolite, and other Na-carbonate evaporite minerals in lakes is commonly closely associated with active volcanism, suggesting that the excess alkalinity required for their formation may arise from fluid-rock interactions involving hydrothermal waters that contain magmatic CO2. Paradoxically, the world's largest Na-carbonate occurrence, contained within the Eocene Green River Formation in Wyoming, USA, was not associated with nearby active magmatism. Magmatism was active ∼200 km southeast in the Colorado Mineral Belt, however, suggesting that a river draining this area could have supplied excess alkalinity to Eocene lakes. Sedimentologic studies in southwestern Wyoming, along the course of the hypothesized Aspen paleoriver, document fluvial and deltaic sandstone with generally northwest-directed paleocurrent indicators. Sandstone framework grain compositions and detrital zircon ages are consistent with derivation from the Colorado Mineral Belt and its host rocks. These results provide the first confirmation of a fluvial connection to downstream Eocene lakes, and indicate that lake deposits may offer a unique perspective on upstream magmatic and hydrothermal histories. 
    more » « less
  4. Trona, nahcolite, and other Na-carbonate evaporite minerals in lakes are often closely associated with active volcanism, suggesting that the excess alkalinity required for their formation may arise from fluid-rock interactions involving hydrothermal waters that contain magmatic CO2. Paradoxically, the world’s largest Na-carbonate occurrence, contained within the Eocene Green River Formation in Wyoming, was not associated with nearby active magmatism. Magmatism was active ~200 km southeast in the Colorado Mineral Belt however, suggesting that a river draining this area could have supplied excess alkalinity to Eocene lakes. Sedimentologic studies in southwestern Wyoming, along the course of the hypothesized Aspen paleoriver, document fluvial and deltaic sandstone with generally northwest-directed paleocurrent indicators. Sandstone framework grain compositions and detrital zircon ages are consistent with derivation from the Colorado Mineral Belt and its host rocks. These results provide the first confirmation of a fluvial connection to downstream Eocene lakes, and indicate that lake deposits may offer a unique perspective on upstream magmatic and hydrothermal histories. 
    more » « less
  5. Weathering, erosion, and sediment transport in modern landscapes may be investigated via direct observation of attributes such as elevation, relief, bedrock lithology, climate, drainage organization, watershed extent, and others. Studies of ancient landscape evolution lack this synoptic perspective, however, and instead must rely more heavily on downstream records of fluvial deposits. Provenance analysis based on detrital grain ages has greatly enhanced the utility of such records but has often focused broadly on regional to continental scales. This approach may overlook important details of localized watersheds, which could lead to significant misinterpretation of past sediment dispersal patterns. The present study, therefore, explores the impact of geographic and stratigraphic sampling density on detrital zircon provenance, based on a high-density investigation of U-Pb ages (N = 23, n = 4905) obtained from a narrow chronostratigraphic range (∼2 m.y.) within a relatively small (∼25,000 km2) area of an Eocene nonmarine sedimentary basin. Based on multi-dimensional scaling and DZmix modeling, these strata comprise seven distinct, approximately isochronous detrital zircon (DZ) chronofacies, defined as “. . . a group of sedimentary rocks that contains a specified suite of detrital zircon age populations” (Lawton et al., 2010). Four of these DZ chronofacies reflect long-distance transport from extrabasinal source areas. DZ chronofacies CO-1 and CO-2 are interpreted to derive from a primary sediment source in central Colorado (USA), corroborating previously proposed long-distance sediment transport via the Aspen paleoriver. DZ chronofacies ID-1 and ID-2 are interpreted to have been delivered to the basin from central Idaho by the Idaho paleoriver. In contrast, DZ chronofacies UT-1 and UT-2 are interpreted to reflect local drainage from the Uinta Uplift south of the basin, and DZ chronofacies WY-1 is interpreted to have been sourced from the Rawlins, Granite, and Sierra Madre uplifts to the north and east via the Toya Puki paleoriver. Lateral transitions between different DZ chronofacies in some cases occur over distances as little as 5 km, implying that depositional systems carrying sand from disparate watersheds directly competed to fill available basin accommodation. The results of this study reveal a high degree of complexity of Eocene rivers that converged on the Greater Green River Basin, indicating that their deposits contain a rich record of fine-scale landscape evolution across much of the Laramide foreland and Cordilleran orogen. These results illustrate the need for adequate sample density when assessing basin-scale provenance and offer a cautionary consideration for researchers using sandstone (and incorporated authigenic cement) in other nonmarine basins as the basis for paleoaltimetry or detrital thermochronology studies. 
    more » « less