skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: One-loop quantum stress-energy tensor for the kink and sine-Gordon solitons
We compute the renormalized one-loop quantum corrections to the energy density T00(x) and pressure T11(x) for solitons in the 1+1 dimensional scalar sine-Gordon and kink models. We show how precise implementation of counterterms in dimensional regularization resolves previously identified discrepancies between the integral of T00(x) and the known correction to the total energy.  more » « less
Award ID(s):
2209582
PAR ID:
10504031
Author(s) / Creator(s):
;
Editor(s):
Ringwald, Andreas
Publisher / Repository:
Physics Letters B
Date Published:
Journal Name:
Physics Letters B
Volume:
852
Issue:
C
ISSN:
0370-2693
Page Range / eLocation ID:
138638
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We revisit the correspondence between Calabi-Yau (CY) threefoldisolated singularities \mathbf{X} 𝐗 and five-dimensional superconformal field theories (SCFTs), which ariseat low energy in M-theory on the space-time transverse to \mathbf{X} 𝐗 .Focussing on the case of toric CY singularities, we analyze the“gauge-theory phases” of the SCFT by exploiting fiberwise M-theory/typeIIA duality. In this setup, the low-energy gauge group simply arises onstacks of coincident D6-branes wrapping 2-cycles in some ALE space oftype A_{M-1} A M − 1 fibered over a real line, and the map between the Kähler parameters of \mathbf{X} 𝐗 and the Coulomb branch parameters of the field theory (masses and VEVs)can be read off systematically. Different type IIA “reductions” giverise to different gauge theory phases, whose existence depends on theparticular (partial) resolutions of the isolated singularity \mathbf{X} 𝐗 .We also comment on the case of non-isolated toric singularities.Incidentally, we propose a slightly modified expression for theCoulomb-branch prepotential of 5d \mathcal{N}=1 𝒩 = 1 gauge theories. 
    more » « less
  2. Abstract We studied the magnetic excitations in the quasi-one-dimensional (q-1D) ladder subsystem of Sr 14−x Ca x Cu 24 O 41 (SCCO) using Cu L 3 -edge resonant inelastic X-ray scattering (RIXS). By comparing momentum-resolved RIXS spectra with high ( x  = 12.2) and without ( x  = 0) Ca content, we track the evolution of the magnetic excitations from collective two-triplon (2 T) excitations ( x  = 0) to weakly-dispersive gapped modes at an energy of 280 meV ( x  = 12.2). Density matrix renormalization group (DMRG) calculations of the RIXS response in the doped ladders suggest that the flat magnetic dispersion and damped excitation profile observed at x  = 12.2 originates from enhanced hole localization. This interpretation is supported by polarization-dependent RIXS measurements, where we disentangle the spin-conserving Δ S  = 0 scattering from the predominant Δ S  = 1 spin-flip signal in the RIXS spectra. The results show that the low-energy weight in the Δ S  = 0 channel is depleted when Sr is replaced by Ca, consistent with a reduced carrier mobility. Our results demonstrate that off-ladder impurities can affect both the low-energy magnetic excitations and superconducting correlations in the CuO 4 plaquettes. Finally, our study characterizes the magnetic and charge fluctuations in the phase from which superconductivity emerges in SCCO at elevated pressures. 
    more » « less
  3. In the context of a metric measure space \((X,d,\mu)\), we explore the potential-theoretic implications of having a finite-dimensional Besov space. We prove that if the dimension of the Besov space \(B^\theta_{p,p}(X)\) is \(k>1\), then \(X\) can be decomposed into \(k\) number of irreducible components (Theorem 1.1). Note that \(\theta\) may be bigger than \(1\), as our framework includes fractals. We also provide sufficient conditions under which the dimension of the Besov space is 1. We introduce critical exponents \(\theta_p(X)\) and \(\theta_p^{\ast}(X)\) for the Besov spaces. As examples illustrating Theorem 1.1, we compute these critical exponents for spaces \(X\) formed by glueing copies of \(n\)-dimensional cubes, the Sierpiński gaskets, and of the Sierpiński carpet. 
    more » « less
  4. Abstract Alloying selected layered transitional metal trichalcogenides (TMTCs) with unique chain‐like structures offers the opportunities for structural, optical, and electrical engineering thus expands the regime of this class of pseudo‐one‐dimensional materials. Here, the novel phase transition in anisotropic Nb(1−x)TixS3alloys is demonstrated for the first time. Results show that Nb(1−x)TixS3can be fully alloyed across the entire composition range from triclinic‐phase NbS3to monoclinic‐phase TiS3. Surprisingly, incorporation of a small concentration of Ti (x ≈0.05–0.18) into NbS3host matrix is sufficient to induce triclinic to monoclinic transition. Theoretical studies suggest that Ti atoms effectively introduce hole doping, thus rapidly decreases the total energy of monoclinic phase and induces the phase transition. When alloyed, crystalline and optical anisotropy are largely preserved as evidenced by high resolution transmission electron microscopy and angle‐resolved Raman spectroscopy. Further Raman measurements identify Raman modes to determine crystalline anisotropy direction and offer insights into the degree of anisotropy. Overall results introduce Nb(1−x)TixS3as a new and easy phase change material and mark the first phase engineering in anisotropic van der Waals (vdW) trichalcogenide systems for their potential applications in two‐dimensional superconductivity, electronics, photonics, and information technologies. 
    more » « less
  5. The successful fabrication of black phosphorene (Black-P) in 2014 and subsequent synthesis of layered black As 1−x P x alloys have inspired research into two-dimensional (2D) binary As–P compounds. The very recent success in growing blue phosphorene (Blue-P) further motivated exploration of 2D Blue-AsP materials. Here, using ab initio swarm-intelligence global minimum structure-searching methods, we have obtained a series of novel and energetically favored 2D Blue-AsP (denoted x-AsP, x = I, II, III, IV, V) compounds with As : P = 1 : 1 stoichiometry. They display similar honeycomb structures to Blue-P. Remarkably, the lowest-energy AsP monolayer, namely I-AsP, not only possesses a quasi-direct band gap (2.41 eV), which can be tuned to a direct and optimal gap for photovoltaic applications by in-plane strain, but also has an ultrahigh electronic mobility up to ∼7.4 × 10 4 cm 2 V −1 s −1 , far surpassing that of Blue-P, and also exhibits high absorption coefficients (×10 5 cm −1 ). Our simulations also show that 30 nm-thick I-AsP sheet-based cells have photovoltaic efficiency as high as ∼12%, and the I-AsP/CdSe heterostructure solar cells possess a power conversion efficiency as high as ∼13%. All these outstanding characteristics suggest the I-AsP sheet as a promising material for high-efficiency solar cells. 
    more » « less