Developing low‐voltage carboxylate anode materials is critical for achieving low‐cost, high‐performance, and sustainable Na‐ion batteries (NIBs). However, the structure design rationale and structure‐performance correlation for organic carboxylates in NIBs remains elusive. Herein, the spatial effect on the performance of carboxylate anode materials is studied by introducing heteroatoms in the conjugation structure and manipulating the positions of carboxylate groups in the aromatic rings. Planar and twisted organic carboxylates are designed and synthesized to gain insight into the impact of geometric structures to the electrochemical performance of carboxylate anodes in NIBs. Among the carboxylates, disodium 2,2’‐bipyridine‐5,5’‐dicarboxylate (2255‐Na) with a planar structure outperforms the others in terms of highest specific capacity (210 mAh g−1), longest cycle life (2000 cycles), and best rate capability (up to 5 A g−1). The cyclic stability and redox mechanism of 2255‐Na in NIBs are exploited by various characterization techniques. Moreover, high‐temperature (up to 100 °C) and all‐organic batteries based on a 2255‐Na anode, a polyaniline (PANI) cathode, and an ether‐based electrolyte are achieved and exhibited exceptional electrochemical performance. Therefore, this work demonstrates that designing organic carboxylates with extended planar conjugation structures is an effective strategy to achieve high‐performance and sustainable NIBs.
This content will become publicly available on June 14, 2025
Bipolar organic materials have emerged as promising cathode materials for rechargeable batteries because of their high voltage and high capacity. However, they suffer from poor cyclic stability and slow reaction kinetics. In this work, we designed and synthesized two bipolar organic cathode materials, containing carbonyl (n‐type) and amine (p‐type) functional groups, as well as extended conjugation structures, for Na‐ion batteries (NIBs) and rechargeable aluminum batteries (RABs). As universal electrode materials, bipolar organic materials exhibited exceptional electrochemical performance in terms of high capacity, high voltage, long cycle life, and fast rate capability. The extended conjugation structures in backbones of the bipolar organic materials facilitate the π–π stacking with graphene, playing a critical role in the high performance. Furthermore, the formation of a stable and robust NaF‐rich cathode electrolyte interphase was shown to stabilize the bipolar organic cathode in NIBs. Electrochemical kinetic measurements reveal that both functional groups undergo reversible redox reactions. Specifically, the electron transfer rate constant of the p‐type amine group is one order of magnitude higher than that of the n‐type carbonyl group. These results highlight the efficacy of developing bipolar organic materials for achieving high‐performance organic cathode in NIBs and RABs.
more » « less- NSF-PAR ID:
- 10527823
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Batteries & Supercaps
- ISSN:
- 2566-6223
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Redox‐active polymers (RAPs) are promising organic electrode materials for affordable and sustainable batteries due to their flexible chemical structures and negligible solubility in the electrolyte. Developing high‐dimensional RAPs with porous structures and crosslinkers can further improve their stability and redox capability by reducing the solubility and enhancing reaction kinetics. This work reports two three‐dimensional (3D) RAPs as stable organic cathodes in Na‐ion batteries (NIBs) and K‐ion batteries (KIBs). Carbonyl functional groups are incorporated into the repeating units of the RAPs by the polycondensation of Tetrakis(4‐aminophenyl)methane and two different dianhydrides. The RAPs with interconnected 3D extended conjugation structures undergo multi‐electron redox reactions and exhibit high performance in both NIBs and KIBs in terms of long cycle life (up to 8000 cycles) and fast charging capability (up to 2 A g−1). The results demonstrate that developing 3D RAPs is an effective strategy to achieve high‐performance, affordable, and sustainable NIBs and KIBs.
-
Nowadays, lithium-ion batteries are undoubtedly known as the most promising rechargeable batteries. However, these batteries face some big challenges, like not having enough energy and not lasting long enough, that should be addressed. Ternary Ni-rich Li[NixCoyMnz]O2 and Li[NixCoyAlz]O2 cathode materials stand as the ideal candidate for a cathode active material to achieve high capacity and energy density, low manufacturing cost, and high operating voltage. However, capacity gain from Ni enrichment is nullified by the concurrent fast capacity fading because of issues such as gas evolution, microcracks propagation and pulverization, phase transition, electrolyte decomposition, cation mixing, and dissolution of transition metals at high operating voltage, which hinders their commercialization. In order to tackle these problems, researchers conducted many strategies, including elemental doping, surface coating, and particle engineering. This review paper mainly talks about origins of problems and their mechanisms leading to electrochemical performance deterioration for Ni-rich cathode materials and modification approaches to address the problems.
-
The current research on cation-intercalation and conversion-type cathode materials for rechargeable aluminum batteries (RABs) is discussed in this critical review. The experimental evidence for Al 3+ intercalation in transition metal oxides, chalcogenides, MXene, and Prussian blue analogues in both chloroaluminate ionic liquids and aqueous electrolytes is analyzed to identify the true reaction mechanisms. Chevrel phase molybdenum sulfide (Mo 6 S 8 ) is the only proven intercalation material for RABs with unambiguous evidence, different understandings of the Al 3+ intercalation mechanism in Mo 6 S 8 are discussed. For conversion-type cathode materials, the discussion is focused on the conversion mechanism of metal chalcogenides, and the unique reversible oxidation mechanism of sulfur and selenium enabled by the chloroaluminate ionic liquid electrolytes. The reaction mechanisms of organic cathode materials are also discussed.more » « less