Abstract Winter Arctic sea-ice concentration (SIC) decline plays an important role in Arctic amplification which, in turn, influences Arctic ecosystems, midlatitude weather and climate. SIC over the Barents-Kara Seas (BKS) shows large interannual variations, whose origin is still unclear. Here we find that interannual variations in winter BKS SIC have significantly strengthened in recent decades likely due to increased amplitudes of the El Niño-Southern Oscillation (ENSO) in a warming climate. La Niña leads to enhanced Atlantic Hadley cell and a positive phase North Atlantic Oscillation-like anomaly pattern, together with concurring Ural blocking, that transports Atlantic ocean heat and atmospheric moisture toward the BKS and promotes sea-ice melting via intensified surface warming. The reverse is seen during El Niño which leads to weakened Atlantic poleward transport and an increase in the BKS SIC. Thus, interannual variability of the BKS SIC partly originates from ENSO via the Atlantic pathway. 
                        more » 
                        « less   
                    
                            
                            Turbulent Heat Flux, Downward Longwave Radiation, and Large-Scale Atmospheric Circulation Associated with Wintertime Barents–Kara Sea Extreme Sea Ice Loss Events
                        
                    
    
            Abstract We investigate wintertime extreme sea ice loss events on synoptic to subseasonal time scales over the Barents–Kara Sea, where the largest sea ice variability is located. Consistent with previous studies, extreme sea ice loss events are associated with moisture intrusions over the Barents–Kara Sea, which are driven by the large-scale atmospheric circulation. In addition to the role of downward longwave radiation associated with moisture intrusions, which is emphasized by previous studies, our analysis shows that strong turbulent heat fluxes are associated with extreme sea ice melting events, with both turbulent sensible and latent heat fluxes contributing, although turbulent sensible heat fluxes dominate. Our analysis also shows that these events are connected to tropical convective anomalies. A dipole pattern of convective anomalies with enhanced convection over the Maritime Continent and suppressed convection over the central to eastern Pacific is consistently detected about 6–10 days prior to extreme sea ice loss events. This pattern is associated with either the Madden–Julian oscillation (MJO) or El Niño–Southern Oscillation (ENSO). Composites show that extreme sea ice loss events are connected to tropical convection via Rossby wave propagation in the midlatitudes. However, tropical convective anomalies alone are not sufficient to trigger extreme sea ice loss events, suggesting that extratropical variability likely modulates the connection between tropical convection and extreme sea ice loss events. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1825858
- PAR ID:
- 10474509
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Journal of Climate
- Volume:
- 35
- Issue:
- 12
- ISSN:
- 0894-8755
- Format(s):
- Medium: X Size: p. 3747-3765
- Size(s):
- p. 3747-3765
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Wintertime surface ocean heat loss is the key process driving the formation of Subantarctic Mode Water (SAMW), but there are few direct observations of heat fluxes, particularly during winter. The Ocean Observatories Initiative (OOI) Southern Ocean mooring in the southeast Pacific Ocean and the Southern Ocean Flux Station (SOFS) in the southeast Indian Ocean provide the first concurrent, multiyear time series of air–sea fluxes in the Southern Ocean from two key SAMW formation regions. In this work we compare drivers of wintertime heat loss and SAMW formation by comparing air–sea fluxes and mixed layers at these two mooring locations. A gridded Argo product and the ERA5 reanalysis product provide temporal and spatial context for the mooring observations. Turbulent ocean heat loss is on average 1.5 times larger in the southeast Indian (SOFS) than in the southeast Pacific (OOI), with stronger extreme heat flux events in the southeast Indian leading to larger cumulative winter ocean heat loss. Turbulent heat loss events in the southeast Indian (SOFS) occur in two atmospheric regimes (cold air from the south or dry air circulating via the north), while heat loss events in the southeast Pacific (OOI) occur in a single atmospheric regime (cold air from the south). On interannual time scales, wintertime anomalies in net heat flux and mixed layer depth (MLD) are often correlated at the two sites, particularly when wintertime MLDs are anomalously deep. This relationship is part of a larger basin-scale zonal dipole in heat flux and MLD anomalies present in both the Indian and Pacific basins, associated with anomalous meridional atmospheric circulation.more » « less
- 
            Abstract Previous findings show that large-scale atmospheric circulation plays an important role in driving Arctic sea ice variability from synoptic to seasonal time scales. While some circulation patterns responsible for Barents–Kara sea ice changes have been identified in previous works, the most important patterns and the role of their persistence remain unclear. Our study uses self-organizing maps to identify nine high-latitude circulation patterns responsible for day-to-day Barents–Kara sea ice changes. Circulation patterns with a high pressure center over the Urals (Scandinavia) and a low pressure center over Iceland (Greenland) are found to be the most important for Barents–Kara sea ice loss. Their opposite-phase counterparts are found to be the most important for sea ice growth. The persistence of these circulation patterns helps explain sea ice variability from synoptic to seasonal time scales. We further use sea ice models forced by observed atmospheric fields (including the surface circulation and temperature) to reproduce observed sea ice variability and diagnose the role of atmosphere-driven thermodynamic and dynamic processes. Results show that thermodynamic and dynamic processes similarly contribute to Barents–Kara sea ice concentration changes on synoptic time scales via circulation. On seasonal time scales, thermodynamic processes seem to play a stronger role than dynamic processes. Overall, our study highlights the importance of large-scale atmospheric circulation, its persistence, and varying physical processes in shaping sea ice variability across multiple time scales, which has implications for seasonal sea ice prediction. Significance StatementUnderstanding what processes lead to Arctic sea ice changes is important due to their significant impacts on the ecosystem, weather, and shipping, and hence our society. A well-known process that causes sea ice changes is atmospheric circulation variability. We further pin down what circulation patterns and underlying mechanisms matter. We identify multiple circulation patterns responsible for sea ice loss and growth to different extents. We find that the circulation can cause sea ice loss by mechanically pushing sea ice northward and bringing warm and moist air to melt sea ice. The two processes are similarly important. Our study advances understanding of the Arctic sea ice variability with important implications for Arctic sea ice prediction.more » « less
- 
            Using daily reanalysis data from 1979 to 2015, this paper examines the impact of winter Ural blocking (UB) on winter Arctic sea ice concentration (SIC) change over the Barents and Kara Seas (BKS). A case study of the sea ice variability in the BKS in the 2015/16 and 2016/17 winters is first presented to establish a link between the BKS sea ice variability and UB events. Then the UB events are classified into quasi-stationary (QUB), westward-shifting (WUB), and eastward-shifting (EUB) UB types. It is found that the frequency of the QUB events increases significantly during 1999–2015, whereas the WUB events show a decreasing fre- quency trend during 1979–2015. Moreover, it is shown that the variation of the BKS-SIC is related to downward infrared radiation (IR) and surface sensible and latent heat flux changes due to different zonal movements of the UB. Calculations show that the downward IR is the main driver of the BKS-SIC decline for QUB events, while the downward IR and surface sensible heat flux make comparable contributions to the BKS-SIC variation for WUB and EUB events. The SIC decline peak lags the QUB and EUB peaks by about 3 days, though QUB and EUB require lesser prior SIC. The QUB gives rise to the largest SIC decline likely because of its longer persistence, whereas the BKS-SIC decline is relatively weak for the EUB. The WUB is found to cause a SIC decline during its growth phase and an increase during its decay phase. Thus, the zonal movement of the UB has an important impact on the SIC variability in BKS.more » « less
- 
            Abstract. An extreme warming event near the North Pole, with 2 m temperature rising above 0 °C, was observed in late December 2015. This specific event has been attributed to cyclones and their associated moisture intrusions. However, little is known about the characteristics and drivers of similar events in the historical record. Here, using data from European Centre for Medium-Range Weather Forecasts Reanalysis, version 5 (ERA5), we study these winter extreme warming events with 2 m temperature over a grid point above 0 °C over the high Arctic (poleward of 80° N) that occurred during 1980–2021. In ERA5, such wintertime extreme warming events can only be found over the Atlantic sector. They occur rarely over many grid points, with a total absence during some winters. Furthermore, even when occurring, they tend to be short-lived, with the majority of the events lasting for less than a day. By examining their surface energy budget, we found that these events transition with increasing latitude from a regime dominated by turbulent heat flux into the one dominated by downward longwave radiation. Positive sea level pressure anomalies which resemble blocking over northern Eurasia are identified as a key ingredient in driving these events, as they can effectively deflect the eastward propagating cyclones poleward, leading to intense moisture and heat intrusions into the high Arctic. Using an atmospheric river (AR) detection algorithm, the roles of ARs in contributing to the occurrence of these extreme warming events defined at the grid-point scale are explicitly quantified. The importance of ARs in inducing these events increases with latitude. Poleward of about 83° N, 100 % of these events occurred under AR conditions, corroborating that ARs were essential in contributing to the occurrence of these events. Over the past 4 decades, both the frequency, duration, and magnitude of these events have been increasing significantly. As the Arctic continues to warm, these events are likely to increase in both frequency, duration, and magnitude, with great implications for the local sea ice, hydrological cycle, and ecosystem.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
