- Award ID(s):
- 1934721
- PAR ID:
- 10474532
- Editor(s):
- Shekhar, Shashi; Zhou, Zhi-Hua; Chiang, Yao-Yi; Stiglic, Gregor
- Publisher / Repository:
- SIAM
- Date Published:
- Journal Name:
- Proceedings of the 2023 SIAM International Conference on Data Mining (SDM)
- ISBN:
- 978-1-61197-765-3
- Page Range / eLocation ID:
- 847-855
- Format(s):
- Medium: X
- Location:
- Minneapolis, MN
- Sponsoring Org:
- National Science Foundation
More Like this
-
Rapid advancement in inverse modeling methods have brought into light their susceptibility to imperfect data. This has made it imperative to obtain more explainable and trustworthy estimates from these models. In hydrology, basin characteristics can be noisy or missing, impacting streamflow prediction. We propose a probabilistic inverse model framework that can reconstruct robust hydrology basin characteristics from dynamic input weather driver and streamflow response data. We address two aspects of building more explainable inverse models, uncertainty estimation (uncertainty due to imperfect data and imperfect model) and robustness. This can help improve the trust of water managers, handling of noisy data and reduce costs. We also propose an uncertainty based loss regularization that offers removal of 17% of temporal artifacts in reconstructions, 36% reduction in uncertainty and 4% higher coverage rate for basin characteristics. The forward model performance (streamflow estimation) is also improved by 6% using these uncertainty learning based reconstructions.more » « less
-
In hydrology, modeling streamflow remains a challenging task due to the limited availability of basin characteristics information such as soil geology and geomorphology. These characteristics may be noisy due to measurement errors or may be missing altogether. To overcome this challenge, we propose a knowledge-guided, probabilistic inverse modeling method for recovering physical characteristics from streamflow and weather data, which are more readily available. We compare our framework with state-of-the-art inverse models for estimating river basin characteristics. We also show that these estimates offer improvement in streamflow modeling as opposed to using the original basin characteristic values. Our inverse model offers a 3% improvement in R2 for the inverse model (basin characteristic estimation) and 6% for the forward model (streamflow prediction). Our framework also offers improved explainability since it can quantify uncertainty in both the inverse and the forward model. Uncertainty quantification plays a pivotal role in improving the explainability of machine learning models by providing additional insights into the reliability and limitations of model predictions. In our analysis, we assess the quality of the uncertainty estimates. Compared to baseline uncertainty quantification methods, our framework offers a 10% improvement in the dispersion of epistemic uncertainty and a 13% improvement in coverage rate. This information can help stakeholders understand the level of uncertainty associated with the predictions and provide a more comprehensive view of the potential outcomes.more » « less
-
Machine Learning is beginning to provide state-of-the-art performance in a range of environmental applications such as streamflow prediction in a hydrologic basin. However, building accurate broad-scale models for streamflow remains challenging in practice due to the variability in the dominant hydrologic processes, which are best captured by sets of process-related basin characteristics. Existing basin characteristics suffer from noise and uncertainty, among many other things, which adversely impact model performance. To tackle the above challenges, in this paper, we propose a novel Knowledge-guided Self-Supervised Learning (KGSSL) inverse framework to extract system characteristics from driver(input) and response(output) data. This first-of-its-kind framework achieves robust performance even when characteristics are corrupted or missing. We evaluate the KGSSL framework in the context of stream flow modeling using CAMELS (Catchment Attributes and MEteorology for Large-sample Studies) which is a widely used hydrology benchmark dataset. Specifically, KGSSL outperforms baseline by 16% in predicting missing characteristics. Furthermore, in the context of forward modelling, KGSSL inferred characteristics provide a 35% improvement in performance over a standard baseline when the static characteristic are unknown.more » « less
-
Accurate streamflow prediction is critical for ensuring water supply and detecting floods, while also providing essential hydrological inputs for other scientific models in fields such as climate and agriculture.Recently, deep learning models have been shown to achieve state-of-the-art regionalization performance by building a global hydrologic model. These models predict streamflow given catchment physical characteristics and weather forcing data.However, these models are only focused on gauged basins and cannot adapt to ungaugaed basins, i.e., basins without training data. Prediction in Ungauged Basins (PUB) is considered one of the most important challenges in hydrology, as most basins in the United States and around the world have no observations. In this work, we propose a meta-transfer learning approach by enhancing imperfect physics equations that facilitate model adaptation. Intuitively, physical equations can often be used to regularize deep learning models to achieve robust regionalization performance under gauged scenarios, but they can be inaccurate due to the simplified representation of physics. We correct such uncertainty in physical equation by residual approximation and let these corrected equations guide the model training process. We evaluated the proposed method for predicting daily streamflow on the catchment attributes and meteorology for large-sample studies (CAMELS) dataset. The experiment results on hydrological data over 19 years demonstrate the effectiveness of the proposed method in ungauged scenarios.
-
Many environmental systems (e.g., hydrology basins) can be modeled as an entity whose response (e.g., streamflow) depends on drivers (e.g., weather) conditioned on their characteristics (e.g., soil properties). We introduce Entity-aware Conditional Variational Inference (EA-CVI), a novel probabilistic inverse modeling approach, to deduce entity characteristics from observed driver-response data. EA-CVI infers probabilistic latent representations that can accurately predict responses for diverse entities, particularly in out-of-sample few-shot settings. EA-CVI's latent embeddings encapsulate diverse entity characteristics within compact, low-dimensional representations. EA-CVI proficiently identifies dominant modes of variation in responses and offers the opportunity to infer a physical interpretation of the underlying attributes that shape these responses. EA-CVI can also generate new data samples by sampling from the learned distribution, making it useful in zero-shot scenarios. EA-CVI addresses the need for uncertainty estimation, particularly during extreme events, rendering it essential for data-driven decision-making in real-world applications. Extensive evaluations on a renowned hydrology benchmark dataset, CAMELS-GB, validate EA-CVI's abilities.more » « less