skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: H3.1K27me1 loss confers Arabidopsis resistance to Geminivirus by sequestering DNA repair proteins onto host genome
Abstract The H3 methyltransferases ATXR5 and ATXR6 deposit H3.1K27me1 to heterochromatin to prevent genomic instability and transposon re-activation. Here, we report thatatxr5 atxr6mutants display robust resistance to Geminivirus. The viral resistance is correlated with activation of DNA repair pathways, but not with transposon re-activation or heterochromatin amplification. We identify RAD51 and RPA1A as partners of virus-encoded Rep protein. The two DNA repair proteins show increased binding to heterochromatic regions and defense-related genes inatxr5 atxr6vs wild-type plants. Consequently, the proteins have reduced binding to viral DNA in the mutant, thus hampering viral amplification. Additionally, RAD51 recruitment to the host genome arise via BRCA1, HOP2, and CYCB1;1, and this recruitment is essential for viral resistance inatxr5 atxr6. Thus, Geminiviruses adapt to healthy plants by hijacking DNA repair pathways, whereas the unstable genome, triggered by reduced H3.1K27me1, could retain DNA repairing proteins to suppress viral amplification inatxr5 atxr6.  more » « less
Award ID(s):
2001115
PAR ID:
10474563
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. SUMMARY Phase separation forms membraneless compartments in the nuclei, including by establishing heterochromatin “domains” and repair foci. Pericentromeric heterochromatin mostly comprises repeated sequences prone to aberrant recombination, and “safe” homologous recombination (HR) repair of these sequences requires the movement of repair sites to the nuclear periphery before Rad51 recruitment and strand invasion. How this mobilization initiates is unknown, and the contribution of phase separation to these dynamics is unclear. Here, we show that Nup98 nucleoporin is recruited to heterochromatic repair sites before relocalization through Sec13 or Nup88 nucleoporins, and downstream from the Smc5/6 complex and SUMOylation. Remarkably, the phase separation properties of Nup98 are required and sufficient to mobilize repair sites and exclude Rad51, thus preventing aberrant recombination while promoting HR repair. Disrupting this pathway results in heterochromatin repair defects and widespread chromosome rearrangements, revealing a novel “off-pore” role for nucleoporins and phase separation in nuclear dynamics and genome integrity in a multicellular eukaryote. HighlightsNup88 and Sec13 recruit Nup98 to heterochromatic DSBs downstream from Smc5/6Nup88, Sec13 and Nup98 promote repair focus mobilization in heterochromatin ‘off-pore’Nup98 excludes Rad51 from repair sites inside the heterochromatin domainPhase separation by Nup98 is required and sufficient for relocalization and Rad51 exclusion 
    more » « less
  2. Abstract DNA repair proteins can be recruited by their histone reader domains to specific epigenomic features, with consequences on intragenomic mutation rate variation. Here, we investigated H3K4me1-associated hypomutation in plants. We first examined 2 proteins which, in plants, contain Tudor histone reader domains: PRECOCIOUS DISSOCIATION OF SISTERS 5 (PDS5C), involved in homology-directed repair, and MUTS HOMOLOG 6 (MSH6), a mismatch repair protein. The MSH6 Tudor domain of Arabidopsis (Arabidopsis thaliana) binds to H3K4me1 as previously demonstrated for PDS5C, which localizes to H3K4me1-rich gene bodies and essential genes. Mutations revealed by ultradeep sequencing of wild-type and msh6 knockout lines in Arabidopsis show that functional MSH6 is critical for the reduced rate of single-base substitution (SBS) mutations in gene bodies and H3K4me1-rich regions. We explored the breadth of these mechanisms among plants by examining a large rice (Oryza sativa) mutation data set. H3K4me1-associated hypomutation is conserved in rice as are the H3K4me1-binding residues of MSH6 and PDS5C Tudor domains. Recruitment of DNA repair proteins by H3K4me1 in plants reveals convergent, but distinct, epigenome-recruited DNA repair mechanisms from those well described in humans. The emergent model of H3K4me1-recruited repair in plants is consistent with evolutionary theory regarding mutation modifier systems and offers mechanistic insight into intragenomic mutation rate variation in plants. 
    more » « less
  3. null (Ed.)
    Pericentromeric heterochromatin is mostly composed of repeated DNA sequences, which are prone to aberrant recombination during double-strand break (DSB) repair. Studies in Drosophila and mouse cells revealed that ‘safe’ homologous recombination (HR) repair of these sequences relies on the relocalization of repair sites to outside the heterochromatin domain before Rad51 recruitment. Relocalization requires a striking network of nuclear actin filaments (F-actin) and myosins that drive directed motions. Understanding this pathway requires the detection of nuclear actin filaments that are significantly less abundant than those in the cytoplasm, and the imaging and tracking of repair sites for long time periods. Here, we describe an optimized protocol for live cell imaging of nuclear F-actin in Drosophila cells, and for repair focus tracking in mouse cells, including: imaging setup, image processing approaches, and analysis methods. We emphasize approaches that can be applied to identify the most effective fluorescent markers for live cell imaging, strategies to minimize photobleaching and phototoxicity with a DeltaVision deconvolution microscope, and image processing and analysis methods using SoftWoRx and Imaris software. These approaches enable a deeper understanding of the spatial and temporal dynamics of heterochromatin repair and have broad applicability in the fields of nuclear architecture, nuclear dynamics, and DNA repair. 
    more » « less
  4. Pericentromeric heterochromatin is highly enriched for repetitive sequences prone to aberrant recombination. Previous studies showed that homologous recombination (HR) repair is uniquely regulated in this domain to enable ‘safe’ repair while preventing aberrant recombination. In Drosophila cells, DNA double-strand breaks (DSBs) relocalize to the nuclear periphery through nuclear actin-driven directed motions before recruiting the strand invasion protein Rad51 and completing HR repair. End-joining (EJ) repair also occurs with high frequency in heterochromatin of fly tissues, but how alternative EJ (alt-EJ) pathways operate in heterochromatin remains largely uncharacterized. Here, we induce DSBs in single euchromatic and heterochromatic sites using a new system that combines the DR-white reporter and I-SceI expression in spermatogonia of flies. Using this approach, we detect higher frequency of HR repair in heterochromatin, relative to euchromatin. Further, sequencing of mutagenic repair junctions reveals the preferential use of different EJ pathways across distinct euchromatic and heterochromatic sites. Interestingly, synthesis-dependent microhomology-mediated end joining (SD-MMEJ) appears differentially regulated in the two domains, with a preferential use of motifs close to the cut site in heterochromatin relative to euchromatin, resulting in smaller deletions. Together, these studies establish a new approach to study repair outcomes in fly tissues, and support the conclusion that heterochromatin uses more HR and less mutagenic EJ repair relative to euchromatin. 
    more » « less
  5. Pericentromeric heterochromatin mostly comprises repeated DNA sequences prone to ectopic recombination. In Drosophila cells, ‘safe’ homologous recombination repair requires relocalization of heterochromatic repair sites to the nuclear periphery before Rad51 recruitment and strand invasion. DSBs are anchored to the nuclear periphery through the Nup107/160 nucleoporin complex. Previous studies suggested that the nuclear pore ‘basket’ protein Nup153 could also mediate anchoring, but Nup153 RNAi depletion also affects Nup107 association with the pores, preventing a direct assessment of Nup153 role. Using a separation of function mutant, here we show that Nup153 is not required for anchoring heterochromatic DSBs to the nuclear periphery. 
    more » « less