skip to main content


Title: Residency and Fine-scale Habitat Use of Juvenile Goliath Grouper ( Epinephelus Itajara ) in a Mangrove Nursery

The Atlantic goliath grouper (Epinephelus itajara) is the largest grouper species in the Atlantic and exhibits high site fidelity and limited range of movement. By 1990, the goliath grouper population in US waters had declined approximately 95% relative to unfished levels, leading to a harvest ban in 1990. Since then, the south Florida population has grown but the magnitude of recovery remains unknown due to uncertainties about life history characteristics. However, despite these unknowns, the state of Florida approved a limited recreational harvest of goliath grouper. In 2021, fine-scale habitat use of three juvenile goliath grouper was investigated using acoustic telemetry and a positioning solver. All three individuals exhibited high site fidelity as well as a diel habitat use pattern, utilizing seagrass habitat during the night and mangrove habitat during the day. Fine-scale acoustic telemetry provides insight into not only habitat use, but broader habitat preferences as well. This study illustrates the need to consider deep seagrass-dominated channels lined with red mangroves when protecting juvenile goliath grouper populations within Florida Bay, especially as the population is opened to harvest.

 
more » « less
Award ID(s):
2025954 2111661 1852123
NSF-PAR ID:
10474759
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
University of Miami - Rosenstiel School of Marine, Atmospheric & Earth Science
Date Published:
Journal Name:
Bulletin of Marine Science
Volume:
99
Issue:
2
ISSN:
0007-4977
Page Range / eLocation ID:
111 to 118
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    Atlantic tarpon (Megalops atlanticus) are a highly migratory species ranging along continental and insular coastlines of the Atlantic Ocean. Due to their importance to regional recreational and sport fisheries, research has been focused on large-scale movement patterns of reproductively active adults in areas where they are of high economic value. As a consequence, geographically restricted focus on adults has left significant gaps in our understanding of tarpon biology and their movements, especially for juveniles in remote locations where they are common. Our study focused on small-scale patterns of movement and habitat use of juvenile tarpon using acoustic telemetry in a small bay in St. Thomas, US Virgin Islands.

    Results

    Four juvenile tarpon (80–95 cm FL) were tracked from September 2015 to February 2018, while an additional eight juveniles (61–94 cm FL) left the study area within 2 days after tagging and were not included in analysis. Four tarpon had > 78% residency and average activity space of 0.76 km2(range 0.08–1.17 km2) within Brewers Bay (1.8 km2). Their vertical distribution was < 18 m depth with occasional movements to deeper water. Activity was greater during day compared to night, with peaks during crepuscular periods. During the day tarpon used different parts of the bay with consistent overlap around the St. Thomas airport runway and at night tarpon typically remained in a small shallow lagoon. However, when temperatures in the lagoon exceeded 30 °C, tarpon moved to cooler, deeper waters outside the lagoon.

    Conclusion

    Our results, although limited to only four individuals, provide new baseline data on the movement ecology of juvenile Atlantic tarpon. We showed that juvenile tarpon had high residency within a small bay and relatively stable non-overlapping daytime home ranges, except when seasonally abundant food sources were present. Fine-scale acoustic tracking showed the effects of environmental conditions (i.e., elevated seawater temperature) on tarpon movement and habitat use. These observations highlight the need for more extensive studies of juvenile tarpon across a broader range of their distribution, and compare the similarities and differences in behavior among various size classes of individuals from small juveniles to reproductively mature adults.

     
    more » « less
  2. null (Ed.)
    Abstract Background The movement ecology of mutton snapper Lutjanus analis is poorly understood despite their ecological and economic importance in the Caribbean. Passive acoustic telemetry was used to determine home ranges of six adult L. analis , including diel patterns, in Brewers Bay, St. Thomas, US Virgin Islands. Understanding long-term space use, including site fidelity and habitat usage, is necessary to implement effective and appropriate management actions for a species with extensive space and resource needs. Results Individual L. analis were tracked over an average period of 316 days (range 125–509 days) and showed high site fidelity to relatively small home ranges (mean ± SD: 0.103 ± 0.028 km 2 , range 0.019–0.190 km 2 ) and core use areas with low overlap among individuals. Most home ranges had a habitat composition dominated by seagrass and to a lesser degree, coral reef and/or pavement. Nighttime activity spaces were distinct from but contained within daytime areas. Conclusions Mutton snapper showed strong site fidelity to home ranges in Brewers Bay. Two individuals that were absent from the array for more than a few hours were detected at separate arrays at spawning aggregation sites. This study expands upon knowledge of mutton snapper home range characteristics, highlights the importance of maintaining adjacent high-quality habitat types in any spatial management plan, and encourages the adoption of other types of management strategies, particularly for transient-aggregating species. 
    more » « less
  3. Chronic environmental change threatens biodiversity, but acute disturbance events present more rapid and immediate threats. In 2010, a cold snap across south Florida had wide-ranging impacts, including negative effects on recreational fisheries, agriculture, and ecological communities. Here, we use acoustic telemetry and historical longline monitoring to assess the long-term implications of this event on juvenile bull sharks Carcharhinus leucas in the Florida Everglades. Despite the loss of virtually all individuals (ca. 90%) within the Shark River Estuary during the cold snap, the catch per unit effort (CPUE) of age 0 sharks on longlines recovered through recruitment within 6-8 mo of the event. Acoustic telemetry revealed that habitat use patterns of age 0-2 sharks reached an equilibrium in 4-6 yr. In contrast, the CPUE and habitat use of age 3 sharks required 5-7 yr to resemble pre-cold snap patterns. Environmental conditions and predation risk returned to previous levels within 1 yr of the cold snap, but abundances of some prey species remained depressed for several years. Reduced prey availability may have altered the profitability of some microhabitats after the cold snap, leading to more rapid ontogenetic shifts to marine waters among sharks for several years. Accelerated ontogenetic shifts coupled with inter-individual behavioral variability of bull sharks likely led to a slower recovery rate than predicted based on overall shark CPUE. While intrinsic variation driven by stochasticity in dynamic ecosystems may increase the resistance of species to chronic and acute disturbance, it may also increase recovery time in filling the diversity of niches occupied prior to disturbance if resistive capacity is exceeded. 
    more » « less
  4. Abstract

    Fire disturbance in tropical savannas is integral to maintaining habitat heterogeneity and biodiversity, but its impact on avian species is highly variable. Savannas in northern Australia have recently been invaded by gamba grass (Andropogon gayanus), a perennial tussock grass that fuels late season fires at eight times the intensity of native vegetation. As gamba grass rapidly outcompetes native species and promotes more frequent and intense fires, it greatly decreases landscape heterogeneity and alters the effect of fire in tropical savannas. To investigate how a small passerine, the red‐backed fairywren (Malurus melanocephalus), responds to fire disturbance and gamba grass cover, we studied their fine‐scale habitat use throughout the dry season before and after a high intensity fire. We used two spatially distinct approaches, radio‐telemetry and a transect‐based population census, to quantify fairywren habitat use at the group and population level, respectively. Radio‐telemetry and transect surveys revealed no direct mortality associated with the severe bushfire during the middle of the study season, suggesting fairywrens are resilient in the short‐term to fire disturbance. Our results indicate that fairywrens are largely flexible in their habitat use – instead of relocating after fire, they re‐centre their home range around the most photosynthetically productive habitats, dominated by saplings. While we found substantial variation in habitat use among social groups, red‐backed fairywren groups generally avoided dense habitat areas dominated by mature gamba grass. We conclude that red‐backed fairywrens are resilient to fire and flexible in their habitat use in the short‐term; however, in the long‐term, gamba grass may pose a threat to population viability. The importance of flexible behavioural strategies in tropical passerines will increase as fire regimes are exacerbated by invasive species and climate change.

     
    more » « less
  5. Abstract

    Macrophyte foundation species provide both habitat structure and primary production, and loss of these habitats can alter species interactions and lead to changes in energy flow in food webs. Extensive seagrass meadows in Florida Bay have recently experienced a widespread loss of seagrass habitat due to a Thalassia testudinum mass mortality event in 2015 associated with prolonged hypersalinity and bottom-water anoxia. Using stable isotope analysis paired with Bayesian mixing models, we investigated the basal resource use of seven species of seagrass-associated consumers across Florida Bay in areas affected by the 2015 seagrass die-off. Three years after the die-off, basal resource use did not differ for species collected inside and outside the die-off affected areas. Instead, consumers showed seasonal patterns in basal resource use with seagrass the most important in the wet season (58%), while epiphytes were the most important in the dry season (44%). Additionally, intraspecific spatial variability in resource use was lower in the wet season compared to the dry season. We were unable to detect a legacy effect of a major disturbance on the basal resource use of the most common seagrass-associated consumers in Florida Bay.

     
    more » « less