skip to main content

Title: Long-term monitoring provides insight into estuarine top predator (Carcharhinus leucas) resilience following an extreme weather event
Chronic environmental change threatens biodiversity, but acute disturbance events present more rapid and immediate threats. In 2010, a cold snap across south Florida had wide-ranging impacts, including negative effects on recreational fisheries, agriculture, and ecological communities. Here, we use acoustic telemetry and historical longline monitoring to assess the long-term implications of this event on juvenile bull sharks Carcharhinus leucas in the Florida Everglades. Despite the loss of virtually all individuals (ca. 90%) within the Shark River Estuary during the cold snap, the catch per unit effort (CPUE) of age 0 sharks on longlines recovered through recruitment within 6-8 mo of the event. Acoustic telemetry revealed that habitat use patterns of age 0-2 sharks reached an equilibrium in 4-6 yr. In contrast, the CPUE and habitat use of age 3 sharks required 5-7 yr to resemble pre-cold snap patterns. Environmental conditions and predation risk returned to previous levels within 1 yr of the cold snap, but abundances of some prey species remained depressed for several years. Reduced prey availability may have altered the profitability of some microhabitats after the cold snap, leading to more rapid ontogenetic shifts to marine waters among sharks for several years. Accelerated ontogenetic shifts coupled with inter-individual more » behavioral variability of bull sharks likely led to a slower recovery rate than predicted based on overall shark CPUE. While intrinsic variation driven by stochasticity in dynamic ecosystems may increase the resistance of species to chronic and acute disturbance, it may also increase recovery time in filling the diversity of niches occupied prior to disturbance if resistive capacity is exceeded. « less
Authors:
; ;
Award ID(s):
1832229 0620409
Publication Date:
NSF-PAR ID:
10144786
Journal Name:
Marine Ecology Progress Series
Volume:
639
Page Range or eLocation-ID:
169 to 183
ISSN:
0171-8630
Sponsoring Org:
National Science Foundation
More Like this
  1. Predicting the responses of animals to environmental changes is a fundamental goal of ecology and is necessary for conservation and management of species. While most studies focus on relatively gradual changes, extreme events may have lasting impacts on populations. Animals respond to major disturbances such as hurricanes by seeking shelter, migrating, or they may fail to respond appropriately. We assessed the effects of Hurricane Irma in 2017 on the behavior and survival of juvenile bull sharks (Carcharhinus leucas) within a nursery of the Florida coastal Everglades using long-term acoustic telemetry monitoring. Most of our tagged sharks (n = 14) attempted to leavemore »the shallow waters of the Shark River Estuary before the hurricane strike, but individuals varied in the timing and success of their movements. Eight bull sharks left within hours or days before the hurricane, but three left more than a week in advance. Nine of 11 bull sharks (~ 82%) eventually returned to the array within weeks or months of the storm. Six of these returning individuals were detected in a different coastal array in nearshore waters ca. 80 km away from the mouth of the estuary during their absence. The remaining three bull sharks moved downstream relatively late (after the hurricane) and may have died. We used binomial generalized linear mixed models to estimate the probability of presence within the array as a function of several environmental variables. Departure from the array was predicted by declining barometric pressure, increasing rate of change in pressure, and potentially fluctuations in river stage. Juvenile bull sharks may weigh multiple environmental cues, perceived predation risk, their own physical size, and shifting prey resources when making decisions during and after hurricanes.« less
  2. The patchy nature of landscapes drives variation in the extent of ecological processes across space. This spatial ecology is critical to our understanding of organism-environmental interactions and conservation, restoration, and resource management efforts. In fisheries, incorporation of the spatial ecology of fishes remains limited, despite its importance to fishery assessment and management. This study quantified the effects of variation in headwater river stage, as an indicator of freshwater inflow, on the distribution and movement of a valuable recreational fishery species in Florida, common snook (Centropomus undecimalis). The hypothesis tested was that variation in river stage caused important habitat shifts andmore »changes in the movement behavior of Snook. A combination of electrofishing and acoustic telemetry was used to quantify the distribution and movement patterns of snook in the upper Shark River Estuary, Everglades National Park. Negative relationships with river stage were found for all three variables measured: electrofishing catch per unit effort, the proportion of detections by upstream acoustic receivers, and movement rates. Snook were up to 5.8 times more abundant, were detected 2.3 times more frequently, and moved up to 4 times faster at lower river stages associated with seasonal drawdowns in water level. These findings show how seasonal drawdowns result in local aggregations of consumers, largely driven by improved foraging opportunities, and emphasize the importance of maintaining the natural variance in managed hydrological regimes. Results also highlight the importance of understanding the nature of flow-ecology relationships, especially given projected changes in freshwater availability with climate change.« less
  3. The effective management of invasive species requires detailed understanding of the invader’s life history. This information is essential for modeling population growth and predicting rates of expansion, quantifying ecological impacts and assessing the efficacy of removal and control strategies. Indo-Pacific lionfish (Pterois volitans/miles) have rapidly invaded the western Atlantic, Gulf of Mexico and Caribbean Sea with documented negative impacts on native ecosystems. To better understand the life history of this species, we developed and validated a length-based, age-structured model to investigate age, growth and population structure in northeast Florida. The main findings of this study were: (1) lionfish exhibited rapidmore »growth with seasonal variation in growth rates; (2) distinct cohorts were clearly identifiable in the length-frequency data, suggesting that lionfish are recruiting during a relatively short period in summer; and (3) the majority of lionfish were less than two years old with no lionfish older than three years of age, which may be the result of culling efforts as well as ontogenetic habitat shifts to deeper water.

    « less
  4. Wetlands are dynamic environments where aquatic organisms are affected by both predictable and unpredictable changes in hydrology. Understanding how abundant large-bodied predators respond to these changes is especially important in context of wetland restoration. We used satellite telemetry to investigate how individual (e.g., sex, size, body condition) and environmental factors influenced movement behaviors of American Alligators [Alligator mississippiensis (Daudin, 1801)] in a managed freshwater marsh ecosystem of the Florida Everglades. We quantified space use, movement activity, and habitat selection of animals (n = 18) across hydrological seasons and the breeding period and performed stable isotope analyses to infer seasonal dietary changes. Thoughmore »individual animals did not change space use across seasons, movement activity was lower for some individuals and δ15 Nitrogen isotopic values were higher in the dry season possibly reflecting greater foraging opportunities when marsh dry down concentrates prey. Alligators may be using canals as foraging sites which have abundant prey year-round and shallow sawgrass habitats as spots for basking. Based on our findings, ongoing restoration of water inflow will likely change the distribution and movement behavior of alligators.« less
  5. Abstract Background Animal movement is a key ecological process that is tightly coupled to local environmental conditions. While agriculture, urbanisation, and transportation infrastructure are critical to human socio-economic improvement, these have spurred substantial changes in animal movement across the globe with potential impacts on fitness and survival. Notably, however, human disturbance can have differential effects across species, and responses to human activities are thus largely taxa and context specific. As human disturbance is only expected to worsen over the next decade it is critical to better understand how species respond to human disturbance in order to develop effective, case-specific conservationmore »strategies. Methods Here, we use an extensive telemetry dataset collected over 22 years to fill a critical knowledge gap in the movement ecology of lowland tapirs ( Tapirus terrestris ) across areas of varying human disturbance within three biomes in southern Brazil: the Pantanal, Cerrado, and Atlantic Forest. Results From these data we found that the mean home range size across all monitored tapirs was 8.31 km 2 (95% CI 6.53–10.42), with no evidence that home range sizes differed between sexes nor age groups. Interestingly, although the Atlantic Forest, Cerrado, and Pantanal vary substantially in habitat composition, levels of human disturbance, and tapir population densities, we found that lowland tapir movement behaviour and space use were consistent across all three biomes. Human disturbance also had no detectable effect on lowland tapir movement. Lowland tapirs living in the most altered habitats we monitored exhibited movement behaviour that was comparable to that of tapirs living in a near pristine environment. Conclusions Contrary to our expectations, although we observed individual variability in lowland tapir space use and movement, human impacts on the landscape also had no measurable effect on their movement. Lowland tapir movement behaviour thus appears to exhibit very little phenotypic plasticity in response to human disturbance. Crucially, the lack of any detectable response to anthropogenic disturbance suggests that human modified habitats risk being ecological traps for tapirs and this information should be factored into conservation actions and species management aimed towards protecting lowland tapir populations.« less