skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1928702

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Novel multifunctional construction materials are needed to promote resilient infrastructure in the face of climate change and extreme weather. Nanostructured materials such as geopolymer reinforced with carbon-based nanomaterials are a promising way to reach that goal. In recent years, several studies have investigated the influence of nanomaterials on the physical properties of geopolymer composites such as compressive strength and fracture toughness. Yet, a fundamental understanding of the influence of nanomaterials on the nanoscale and micron-scale structure has been elusive so far. Our research objective is to understand how multiwalled carbon nanotubes (MWCNT) can help tailor the microstructure of geopolymers to yield architected multifunctional nanocomposites. We synthesized geopolymer nanocomposites reinforced with 50-nm thick multiwalled carbon nanotubes with mass fractions in the range of 0.1 wt%, 0.2 wt%, and 0.5 wt%. Our major finding is that MWCNTs act as hard templates that promote geopolymer formation via self-assembly. Geopolymer nanoparticle growth is observed along the walls of MWCNTs. A refinement in grain size is observed: increasing the fraction of MWCNTs by 0.5 wt% leads to a reduction in grain size by 54%. Similarly, increasing the mass fraction of MWCNTs leads to a densification of the geopolymer matrix as demonstrated by the Fourier transform infrared spectroscopy results and the statistical deconvolution analysis. Mercury intrusion porosimetry shows a nanoscale tailoring of the pore size distribution: a 26% decrease in porosity is observed as the fraction of MWCNTs is increased to 0.5 wt%. As a result of these nanoscale structural changes, a greater resistance to long-term deformation is observed for MWCNT-reinforced geopolymers, as the creep modulus increases both locally and macroscopically. At the macroscopic level, a 42% increase in the macroscopic logarithmic creep modulus is observed as the fraction of MWCNTs is increased to 0.5 wt%. These findings and the supporting methodology are important to understand how to manipulate matter below 100 nm. This research also paves the way for the design of resilient infrastructure materials with tailored microstructure and mechanical properties. 
    more » « less
  2. Fiber-reinforced composites have provided tremendous opportunities in advanced engineering materials, but the fiber generation and spatial distribution are the most challenging aspects. This paper proposes a novel fabrication approach for fiber-reinforced composites with spatially resolved fiber distribution by combining immersion and near-field electrospinning. The new Immersed Electrohydrodynamic Direct-writing (I-EHD) process makes use of an electrostatic force to draw ultrafine fibers and allows the freestanding of electrospun fibers all inside a liquid matrix. This novel approach enables the dynamic control of fiber morphology and 3D spatial distribution inside the composites, which may lead to future scalable 3D printing of multifunctional composites. 
    more » « less
  3. Inspired by the mineralization process of bone, we have investigated mineralization on piezoelectric samples immersed in a solution with mineral ions. We have utilized polyvinylidene fluoride as a piezoelectric material and 10× simulated body fluid as a mineral solution. Three synthetic material systems were developed and characterized using scanning electron microscopy, X-ray diffraction, nanoindentation, and scratch testing. With these techniques, we provide insights into how the characteristics of the mineralization protocol affect the microstructure, chemical composition, crystal structure, and mechanical properties of the minerals. Increasing the solution temperature from 25°C to 50°C resulted in a greater packing density, roughly 10 times the stiffness and 4 times the fracture toughness. Collagen surface treatment resulted in roughly 7 times the stiffness along with potential anisotropy in the fracture toughness. Lastly, calcium phosphate minerals appear to pack in low-density and high-density phases on the piezoelectric scaffolds. 
    more » « less