skip to main content

Title: Resolving Orbits of Low Mass Companions in the Hyades Cluster
We are resolving the orbits of spectroscopic binary stars in the Hyades Cluster using the CHARA Array. We obtained positions and flux ratios in the H-band using the MIRC-X combiner and the K-band using the recently commissioned MYSTIC combiner. We present preliminary orbital fits and mass estimates for four binary systems (HD 27691, HD 28033, HD 28294, and HD 28394). The sample consists of binaries where the primary stars have F-G spectral types and the companions are low mass stars with masses in the range of 0.3-0.9 Msun. The results will be used to test evolutionary models for low mass stars. The large mass difference between the components will provide leverage for testing the isochrones and refining the age of the Hyades cluster.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Astronomical Society
Date Published:
Journal Name:
Bulletin of the American Astronomical Society
Page Range / eLocation ID:
Subject(s) / Keyword(s):
["Stars, Cool Dwarfs"]
Medium: X
Pasadena, CA
Sponsoring Org:
National Science Foundation
More Like this

    We report near-infrared long-baseline interferometric observations of the Hyades multiple system HD 284163, made with the Center for High Angular Resolution Astronomy array, as well as almost 43 yr of high-resolution spectroscopic monitoring at the Center for Astrophysics. Both types of observations resolve the 2.39 d inner binary, and also an outer companion in a 43.1 yr orbit. Our observations, combined with others from the literature, allow us to solve for the 3D inner and outer orbits, which are found to be at nearly right angles to each other. We determine the dynamical masses of the three stars (good to better than 1.4 per cent for the inner pair), as well as the orbital parallax. The secondary component (0.5245 ± 0.0047 M⊙) is now the lowest mass star with a dynamical mass measurement in the cluster. A comparison of these measurements with current stellar evolution models for the age and metallicity of the Hyades shows good agreement. All three stars display significant levels of chromospheric activity, consistent with the classification of HD 284163 as an RS CVn object. We present evidence that a more distant fourth star is physically associated, making this a hierarchical quadruple system.

    more » « less
  2. Abstract

    X-ray observations of low-mass stars in open clusters are critical to understanding the dependence of magnetic activity on stellar properties and their evolution. Praesepe and the Hyades, two of the nearest, most-studied open clusters, are among the best available laboratories for examining the dependence of magnetic activity on rotation for stars with masses ≲1M. We present an updated study of the rotation–X-ray activity relation in the two clusters. We updated membership catalogs that combine pre-Gaia catalogs with new catalogs based on Gaia Data Release 2. The resulting catalogs are the most inclusive ones for both clusters: 1739 Praesepe and 1315 Hyades stars. We collected X-ray detections for cluster members, for which we analyzed, re-analyzed, or collated data from ROSAT, the Chandra X-ray Observatory, the Neil Gehrels Swift Observatory, and XMM-Newton. We have detections for 326 Praesepe and 462 Hyades members, of which 273 and 164, respectively, have rotation periods—an increase of 6× relative to what was previously available. We find that at ≈700 Myr, only M dwarfs remain saturated in X-rays, with only tentative evidence for supersaturation. We also find a tight relation between the Rossby number and fractional X-ray luminosityLX/Lbolin unsaturated single members, suggesting a power-law index between −3.2 and −3.9. Lastly, we find no difference in the coronal parameters between binary and single members. These results provide essential insight into the relative efficiency of magnetic heating of the stars’ atmospheres, thereby informing the development of robust age-rotation-activity relations.

    more » « less
  3. Abstract

    Precision CCDuvbyCaHβphotometry is presented of the old cluster, M67, covering one square degree with typical internal precision at the 0.005–0.020 mag level toV∼ 17. The photometry is calibrated using standards over a wide range in luminosity and temperature from NGC 752 and zeroed to the standard system via published photoelectric observations. Relative to NGC 752, differential offsets in reddening and metallicity are derived using astrometric members, supplemented by radial velocity information. From single-star members, offsets in the sense (M67−NGC 752) areδE(by) = −0.005 ± 0.001 (sem) mag from 327 F/G dwarfs andδ[Fe/H] = 0.062 ± 0.006 (sem) dex from the combinedm1andhkindices of 249 F dwarfs, leading toE(by) = 0.021 ± 0.004 (sem) and [Fe/H]M67= +0.030 ± 0.016 (sem) assuming [Fe/H]Hyades= +0.12. With probable binaries eliminated usingc1, (by) indices, 83 members with (π/σπ) > 50 generate (mM)0= 8.220 ± 0.005 (sem) for NGC 752 and an isochronal age of 1.45 ± 0.05 Gyr. Using the same parallax restriction for 312 stars, M67 has (mM) = 9.77 ± 0.02 (sem), leading to an age tied solely to the luminosity of the subgiant branch of 3.70 ± 0.03 Gyr. The turnoff color spread implies ±0.1 Gyr, but the turnoff morphology defines a younger age/higher mass for the stars, consistent with recent binary analysis and broadband photometry indicating possible missing physics in the isochrones. Anomalous stars positioned blueward of the turnoff are discussed.

    more » « less

    Using the Las Cumbres Observatory Global Telescope Network (LCOGT), we have obtained multi-epoch photometry of the young cluster Mon R2. We have monitored over 6000 sources with i-band between 13 and 23 mag within a 26 × 26 arcmin2 field of view. For each star, we collected ∼1500 photometric points covering a temporal window of 23 d. Based on these data, we have measured rotation-modulated of 136 stars and identified around 90 additional variables, including 14 eclipsing binary candidates. Moreover, we found 298 other variables with photometric high-scatter. In addition, we have obtained r-band and Hα narrow-band photometry of the cluster with LCOGT and low-resolution optical spectroscopy of 229 stars with GMOS-Gemini. We used the Gaia data from the periodic stars and objects with Hα or IR-excesses, which are mostly low-mass pre-main sequence stars (<1 M⊙) in the cluster to estimate the distance (825 ± 51 pc) and the mean proper motions (μαcos(δ) = −2.75 mas yr−1 and μδ = 1.15 mas yr−1) of its members. This allows us to use the Gaia data to identify additional Mon R2 member candidates. We also used Pan-STARRS photometry from our LCOGT sources to construct a more precise H-R diagram, from which we estimate the mean age of the cluster and identify other possible members including eleven spectroscopy brown dwarf with M7 to M9 GMOS spectral types. Finally, we combined our membership lists with Spitzer infrared photometry to investigate the incidence of stars with discs and the effect these have on stellar rotation.

    more » « less
  5. Abstract We present a spectroscopic analysis of a sample of 48 M-dwarf stars (0.2 M ⊙ < M < 0.6 M ⊙ ) from the Hyades open cluster using high-resolution H -band spectra from the Sloan Digital Sky Survey/Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey. Our methodology adopts spectrum synthesis with LTE MARCS model atmospheres, along with the APOGEE Data Release 17 line list, to determine effective temperatures, surface gravities, metallicities, and projected rotational velocities. The median metallicity obtained for the Hyades M dwarfs is [M/H] = 0.09 ± 0.03 dex, indicating a small internal uncertainty and good agreement with optical results for Hyades red giants. Overall, the median radii are larger than predicted by stellar models by 1.6% ± 2.3% and 2.4% ± 2.3%, relative to a MIST and DARTMOUTH isochrone, respectively. We emphasize, however, that these isochrones are different, and the fractional radius inflation for the fully and partially convective regimes have distinct behaviors depending on the isochrone. Using a MIST isochrone there is no evidence of radius inflation for the fully convective stars, while for the partially convective M dwarfs the radii are inflated by 2.7% ± 2.1%, which is in agreement with predictions from models that include magnetic fields. For the partially convective stars, rapid rotators present on average higher inflation levels than slow rotators. The comparison with SPOTS isochrone models indicates that the derived M-dwarf radii can be explained by accounting for stellar spots in the photosphere of the stars, with 76% of the studied M dwarfs having up to 20% spot coverage, and the most inflated stars with ∼20%–40% spot coverage. 
    more » « less