skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: What Distributions are Robust to Indiscriminate Poisoning Attacks for Linear Learners?
We study indiscriminate poisoning for linear learners where an adversary injects a few crafted examples into the training data with the goal of forcing the induced model to incur higher test error. Inspired by the observation that linear learners on some datasets are able to resist the best known attacks even without any defenses, we further investigate whether datasets can be inherently robust to indiscriminate poisoning attacks for linear learners. For theoretical Gaussian distributions, we rigorously characterize the behavior of an optimal poisoning attack, defined as the poisoning strategy that attains the maximum risk of the induced model at a given poisoning budget. Our results prove that linear learners can indeed be robust to indiscriminate poisoning if the class-wise data distributions are well-separated with low variance and the size of the constraint set containing all permissible poisoning points is also small. These findings largely explain the drastic variation in empirical attack performance of the state-of-the-art poisoning attacks on linear learners across benchmark datasets, making an important initial step towards understanding the underlying reasons some learning tasks are vulnerable to data poisoning attacks.  more » « less
Award ID(s):
1804603
PAR ID:
10474939
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Neural Information Processing Systems Foundation
Date Published:
Journal Name:
Advances in neural information processing systems
Volume:
2023
ISSN:
1049-5258
Format(s):
Medium: X
Location:
New Orleans, LA
Sponsoring Org:
National Science Foundation
More Like this
  1. We characterize offline data poisoning attacks on Multi-Agent Reinforcement Learning (MARL), where an attacker may change a data set in an attempt to install a (potentially fictitious) unique Markov-perfect Nash equilibrium for a two-player zero-sum Markov game. We propose the unique Nash set, namely the set of games, specified by their Q functions, with a specific joint policy being the unique Nash equilibrium. The unique Nash set is central to poisoning attacks because the attack is successful if and only if data poisoning pushes all plausible games inside it. The unique Nash set generalizes the reward polytope commonly used in inverse reinforcement learning to MARL. For zero-sum Markov games, both the inverse Nash set and the set of plausible games induced by data are polytopes in the Q function space. We exhibit a linear program to efficiently compute the optimal poisoning attack. Our work sheds light on the structure of data poisoning attacks on offline MARL, a necessary step before one can design more robust MARL algorithms. 
    more » « less
  2. In offline multi-agent reinforcement learning (MARL), agents estimate policies from a given dataset. We study reward-poisoning attacks in this setting where an exogenous attacker modifies the rewards in the dataset before the agents see the dataset. The attacker wants to guide each agent into a nefarious target policy while minimizing the Lp norm of the reward modification. Unlike attacks on single-agent RL, we show that the attacker can install the target policy as a Markov Perfect Dominant Strategy Equilibrium (MPDSE), which rational agents are guaranteed to follow. This attack can be significantly cheaper than separate single-agent attacks. We show that the attack works on various MARL agents including uncertainty-aware learners, and we exhibit linear programs to efficiently solve the attack problem. We also study the relationship between the structure of the datasets and the minimal attack cost. Our work paves the way for studying defense in offline MARL. 
    more » « less
  3. A backdoor data poisoning attack is an adversarial attack wherein the attacker injects several watermarked, mislabeled training examples into a training set. The watermark does not impact the test-time performance of the model on typical data; however, the model reliably errs on watermarked examples. To gain a better foundational understanding of backdoor data poisoning attacks, we present a formal theoretical framework within which one can discuss backdoor data poisoning attacks for classification problems. We then use this to analyze important statistical and computational issues surrounding these attacks. On the statistical front, we identify a parameter we call the memorization capacity that captures the intrinsic vulnerability of a learning problem to a backdoor attack. This allows us to argue about the robustness of several natural learning problems to backdoor attacks. Our results favoring the attacker involve presenting explicit constructions of backdoor attacks, and our robustness results show that some natural problem settings cannot yield successful backdoor attacks. From a computational standpoint, we show that under certain assumptions, adversarial training can detect the presence of backdoors in a training set. We then show that under similar assumptions, two closely related problems we call backdoor filtering and robust generalization are nearly equivalent. This implies that it is both asymptotically necessary and sufficient to design algorithms that can identify watermarked examples in the training set in order to obtain a learning algorithm that both generalizes well to unseen data and is robust to backdoors. 
    more » « less
  4. null (Ed.)
    In a poisoning attack, an adversary with control over a small fraction of the training data attempts to select that data in a way that induces a corrupted model that misbehaves in favor of the adversary. We consider poisoning attacks against convex machine learning models and propose an efficient poisoning attack designed to induce a specified model. Unlike previous model-targeted poisoning attacks, our attack comes with provable convergence to any attainable target classifier. The distance from the induced classifier to the target classifier is inversely proportional to the square root of the number of poisoning points. We also provide a lower bound on the minimum number of poisoning points needed to achieve a given target classifier. Our method uses online convex optimization, so finds poisoning points incrementally. This provides more flexibility than previous attacks which require a priori assumption about the number of poisoning points. Our attack is the first model-targeted poisoning attack that provides provable convergence for convex models, and in our experiments, it either exceeds or matches state-of-the-art attacks in terms of attack success rate and distance to the target model. 
    more » « less
  5. Emerging technologies drive the ongoing transformation of Intelligent Transportation Systems (ITS). This transformation has given rise to cybersecurity concerns, among which data poisoning attack emerges as a new threat as ITS increasingly relies on data. In data poisoning attacks, attackers inject malicious perturbations into datasets, potentially leading to inaccurate results in offline learning and real-time decision-making processes. This paper concentrates on data poisoning attack models against ITS. We identify the main ITS data sources vulnerable to poisoning attacks and application scenarios that enable staging such attacks. A general framework is developed following rigorous study process from cybersecurity but also considering specific ITS application needs. Data poisoning attacks against ITS are reviewed and categorized following the framework. We then discuss the current limitations of these attack models and the future research directions. Our work can serve as a guideline to better understand the threat of data poisoning attacks against ITS applications, while also giving a perspective on the future development of trustworthy ITS. Emerging technologies drive the ongoing transformation of Intelligent Transportation Systems (ITS). This transformation has given rise to cybersecurity concerns, among which data poisoning attack emerges as a new threat as ITS increasingly relies on data. In data poisoning attacks, attackers inject malicious perturbations into datasets, potentially leading to inaccurate results in offline learning and real-time decision-making processes. This paper concentrates on data poisoning attack models against ITS. We identify the main ITS data sources vulnerable to poisoning attacks and application scenarios that enable staging such attacks. A general framework is developed following rigorous study process from cybersecurity but also considering specific ITS application needs. Data poisoning attacks against ITS are reviewed and categorized following the framework. We then discuss the current limitations of these attack models and the future research directions. Our work can serve as a guideline to better understand the threat of data poisoning attacks against ITS applications, while also giving a perspective on the future development of trustworthy ITS. 
    more » « less