skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The positivity principle: do positive instructors improve learning from video lectures?
Abstract The positivity principle states that people learn better from instructors who display positive emotions rather than negative emotions. In two experiments, students viewed a short video lecture on a statistics topic in which an instructor stood next to a series of slides as she lectured and then they took either an immediate test (Experiment 1) or a delayed test (Experiment 2). In a between-subjects design, students saw an instructor who used her voice, body movement, gesture, facial expression, and eye gaze to display one of four emotions while lecturing: happy (positive/active), content (positive/passive), frustrated (negative/active), or bored (negative/passive). First, learners were able to recognize the emotional tone of the instructor in an instructional video lecture, particularly by more strongly rating a positive instructor as displaying positive emotions and a negative instructor as displaying negative emotions (in Experiments 1 and 2). Second, concerning building a social connection during learning, learners rated a positive instructor as more likely to facilitate learning, more credible, and more engaging than a negative instructor (in Experiments 1 and 2). Third, concerning cognitive engagement during learning, learners reported paying more attention during learning for a positive instructor than a negative instructor (in Experiments 1 and 2). Finally, concerning learning outcome, learners who had a positive instructor scored higher than learners who had a negative instructor on a delayed posttest (Experiment 2) but not an immediate posttest (Experiment 1). Overall, there is evidence for the positivity principle and the cognitive-affective model of e-learning from which it is derived.  more » « less
Award ID(s):
1821894
PAR ID:
10474990
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Springer Link
Date Published:
Journal Name:
Educational Technology Research and Development
Volume:
69
Issue:
6
ISSN:
1042-1629
Page Range / eLocation ID:
3101 to 3129
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Learners' awareness of their own affective states (emotions) can improve their meta-cognition, which is a critical skill of being aware of and controlling one's cognitive, motivational, and affect, and adjusting their learning strategies and behaviors accordingly. To investigate the effect of peers' affects on learners' meta-cognition, we proposed two types of cues that aggregated peers' affects that were recognized via facial expression recognition:Locative cues (displaying the spikes of peers' emotions along a video timeline) andTemporal cues (showing the positivities of peers' emotions at different segments of a video). We conducted a between-subject experiment with 42 college students through the use of think-aloud protocols, interviews, and surveys. Our results showed that the two types of cues improved participants' meta-cognition differently. For example, interacting with theTemporal cues triggered the participants to compare their own affective responses with their peers and reflect more on why and how they had different emotions with the same video content. While the participants perceived the benefits of using AI-generated peers' cues to improve their awareness of their own learning affects, they also sought more explanations from their peers to understand the AI-generated results. Our findings not only provide novel design implications for promoting learners' meta-cognition with privacy-preserved social cues of peers' learning affects, but also suggest an expanded design framework for Explainable AI (XAI). 
    more » « less
  2. Given that the active learning literature lacks systematic investigations on how the intensity and integration of lecture and active learning affects learning, we conducted two experiments to examine the impact of these variables. The first experiment involved 146 participants who learned about biological taxonomies through pure lecture or pure active learning. Participants in the pure lecture condition scored significantly higher on a posttest than those in the pure active learning condition. The second experiment involved 219 participants who learned about biological taxonomies through pure lecture, a lecture and active learning activity that were interspersed, or a lecture and active learning activity that were blocked. Participants in the interspersed condition scored significantly higher than participants in the blocked and pure lecture conditions (which did not significantly differ). Based on these experiments, it may not be a question of either/or but rather a question of how to integrate lecture and active learning. 
    more » « less
  3. Abstract BackgroundUsing simulations in science instruction can help make abstract topics more concrete and boost students' understanding. AimsThe current research examined whether using a simulation as an exploratory learning activity before an accompanying lecture has additional learning and motivational benefits compared to a more common lecture‐then‐simulation approach. SamplesParticipants (Experiment 1,N = 168; Experiment 2,N = 357) were undergraduate students in several sections of a first‐year chemistry course. MethodsStudents were randomly assigned to explore a simulation on atomic structure either before a lecture (explore‐first condition) or after the lecture (instruct‐first condition). In Experiment 1, the simulation activity time was limited (15 min) and the activity varied in whether self‐explanation (‘why’) prompts were included. In Experiment 2, the activity time was lengthened (20 min), and only ‘why’ prompts were used. After the activity and lecture, students completed a survey and posttest. ResultsIn Experiment 1, students in the explore‐first condition scored lower on posttest conceptual knowledge scores and reported lower curiosity compared to students in the instruct‐first condition. Scores for basic facts and transfer knowledge, and self‐reported situational interest, self‐efficacy, and competence, were equal between conditions. No effects of prompt condition were found. In Experiment 2, with longer activity time, the results reversed. Students in the explore‐first condition scored equally on basic facts and higher on conceptual knowledge and transfer measures, while also reporting higher curiosity, situational interest, self‐efficacy, competence, and cognitive engagement. ConclusionWhen properly designed, placing simulations before—rather than after—lecture can deepen learning, motivation, and competence. 
    more » « less
  4. This study examines an aspect of the role of emotion in multimedia learning, i.e., whether participants can recognize the instructor’s positive or negative emotion based on hearing short clips involving only the instructor’s voice just as well as also seeing an embodied onscreen agent. Participants viewed 16 short video clips from a statistics lecture in which an animated instructor, conveying a happy, content, frustrated, or bored emotion, stands next to a slide as she lectures (agent present) or uses only her voice (agent absent). For each clip, participants rated the instructor on five-point scales for how happy, content, frustrated, and bored the instructor seemed. First, for happy, content, and bored instructors, participants were just as accurate in rating emotional tone based on voice only as with voice plus onscreen agent. This supports the voice hypothesis, which posits that voice is a powerful source of social-emotional information. Second, participants rated happy and content instructors higher on happy and content scales and rated frustrated and bored instructors higher on frustrated and bored scales. This supports the positivity hypothesis, which posits that people are particularly sensitive to the positive or negative tone of multimedia instructional messages. 
    more » « less
  5. COVID‐19 greatly increased the online delivery of higher education. But one limitation of online learning is that students often struggle to stay engaged while watching online lectures. We examined whether including an instructor's face in lecture videos (instructor visibility) enhances student engagement or learning. In two preregistered experiments, we found that instructor visibility in lecture videos did not affect either engagement or learning overall. However, participants reported higher engagement when they watched a video that aligned with their preference for instructor visibility. For example, participants who favored videos with the instructor visible reported greater engagement with such videos compared to those without the instructor, and vice versa. Additionally, we examined the effects of playback speed on engagement and learning. Our results suggest that speeded playing did not impact engagement but resulted in better learning efficiency. Lastly, using GPT, we explored participants' open‐ended responses to understand their preference for video lectures. 
    more » « less