Abstract BackgroundReal‐world engineering problems are ill‐defined and complex, and solving them may arouse negative epistemic affect (feelings experienced within problem‐solving). These feelings fall into sequenced patterns (affective pathways). Over time, these patterns can alter students' attitudes toward engineering. Meta‐affect (affect or cognition about affect) can shape or reframe affective pathways, changing a student's problem‐solving experience. Purpose/Hypothesis(es)This paper examines epistemic affect and meta‐affect in undergraduate students solving ill‐defined problems called open‐ended modeling problems (OEMPs), addressing two research questions: What epistemic affect and transitions between different affective states do students report? And, how does meta‐affect shape students' affective experiences? Design/MethodWe examined 11 retrospective interviews with nine students performed across two semesters in which students completed OEMPs. Using inductive and deductive coding with discourse analysis, we systematically searched for expressions conveying epistemic affect and for transitions in affect; we performed additional deductive coding of the transcripts for meta‐affect and synthesized these results to formulate narratives related to affect and meta‐affect. ResultsTogether, the expressions, transitions, and meta‐affect suggest different types of student experiences. Depending on their meta‐affect, students either recounted experiences dominated by positive or negative affect, or else they experienced negative emotions as productive. ConclusionsIll‐defined complex problems elicit a wide range of positive and negative emotions and provide opportunities to practice affective regulation and productive meta‐affect. Viewing the OEMPs as authentic disciplinary experiences and/or the ability to view negative emotions as productive can enable overall positive experiences. Our results provide insight into how instructors can foster positive affective pathways through problem‐scaffolding or their interactions with students. 
                        more » 
                        « less   
                    
                            
                            MirrorUs: Mirroring Peers' Affective Cues to Promote Learner's Meta-Cognition in Video-based Learning
                        
                    
    
            Learners' awareness of their own affective states (emotions) can improve their meta-cognition, which is a critical skill of being aware of and controlling one's cognitive, motivational, and affect, and adjusting their learning strategies and behaviors accordingly. To investigate the effect of peers' affects on learners' meta-cognition, we proposed two types of cues that aggregated peers' affects that were recognized via facial expression recognition:Locative cues (displaying the spikes of peers' emotions along a video timeline) andTemporal cues (showing the positivities of peers' emotions at different segments of a video). We conducted a between-subject experiment with 42 college students through the use of think-aloud protocols, interviews, and surveys. Our results showed that the two types of cues improved participants' meta-cognition differently. For example, interacting with theTemporal cues triggered the participants to compare their own affective responses with their peers and reflect more on why and how they had different emotions with the same video content. While the participants perceived the benefits of using AI-generated peers' cues to improve their awareness of their own learning affects, they also sought more explanations from their peers to understand the AI-generated results. Our findings not only provide novel design implications for promoting learners' meta-cognition with privacy-preserved social cues of peers' learning affects, but also suggest an expanded design framework for Explainable AI (XAI). 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10540767
- Publisher / Repository:
- ACM Digital Library
- Date Published:
- Journal Name:
- Proceedings of the ACM on Human-Computer Interaction
- Volume:
- 7
- Issue:
- CSCW2
- ISSN:
- 2573-0142
- Page Range / eLocation ID:
- 1 to 25
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The paper reports ongoing research toward the design of multimodal affective pedagogical agents that are effective for different types of learners and applications. In particular, the work reported in the paper investigated the extent to which the type of character design (realistic versus stylized) affects students’ perception of an animated agent’s facial emotions, and whether the effects are moderated by learner characteristics (e.g. gender). Eighty-two participants viewed 10 animation clips featuring a stylized character exhibiting 5 different emotions, e.g. happiness, sadness, fear, surprise and anger (2 clips per emotion), and 10 clips featuring a realistic character portraying the same emotional states. The participants were asked to name the emotions and rate their sincerity, intensity, and typicality. The results indicated that for recognition, participants were slightly more likely to recognize the emotions displayed by the stylized agent, although the difference was not statistically significant. The stylized agent was on average rated significantly higher for facial emotion intensity, whereas the differences in ratings for typicality and sincerity across all emotions were not statistically significant. A significant difference in ratings was shown in regard to sadness (within typicality), happiness (within sincerity), fear, anger, sadness and happiness (within intensity) with the stylized agent rated higher. Gender was not a significant correlate across all emotions or for individual emotions.more » « less
- 
            Accessibility efforts for d/Deaf and hard of hearing (DHH) learners in video-based learning have mainly focused on captions and interpreters, with limited attention to learners' emotional awareness--an important yet challenging skill for effective learning. Current emotion technologies are designed to support learners' emotional awareness and social needs; however, little is known about whether and how DHH learners could benefit from these technologies. Our study explores how DHH learners perceive and use emotion data from two collection approaches, self-reported and automatic emotion recognition (AER), in video-based learning. By comparing the use of these technologies between DHH (N=20) and hearing learners (N=20), we identified key differences in their usage and perceptions: 1) DHH learners enhanced their emotional awareness by rewatching the video to self-report their emotions and called for alternative methods for self-reporting emotion, such as using sign language or expressive emoji designs; and 2) while the AER technology could be useful for detecting emotional patterns in learning experiences, DHH learners expressed more concerns about the accuracy and intrusiveness of the AER data. Our findings provide novel design implications for improving the inclusiveness of emotion technologies to support DHH learners, such as leveraging DHH peer learners' emotions to elicit reflections.more » « less
- 
            This preliminary study examined how users leveraged three different types of signaling elements in Scale Worlds, an immersive virtual reality (IVR) application designed to improve size and scale cognition. Signaling elements, which are instructional cues in the form of graphics, colors, sounds, or text in IVR, may improve learning outcomes by enhancing related cognitive processes. However, it is unclear the extent to which learners utilize these signaling elements in practice. A think-aloud protocol was used to examine how participants engaged with signaling elements, with thematic analysis suggesting that numerical measures were a particularly salient cue for conceptualizing the size and scale of entities in IVR. These findings can guide design decisions for future work on educational IVR in the context of size and scale cognition or STEM education, as implementing numerical measures to facilitate mathematical reasoning in IVR environments may bolster learning outcomes related to numeracy and conceptual understanding.more » « less
- 
            Abstract The positivity principle states that people learn better from instructors who display positive emotions rather than negative emotions. In two experiments, students viewed a short video lecture on a statistics topic in which an instructor stood next to a series of slides as she lectured and then they took either an immediate test (Experiment 1) or a delayed test (Experiment 2). In a between-subjects design, students saw an instructor who used her voice, body movement, gesture, facial expression, and eye gaze to display one of four emotions while lecturing: happy (positive/active), content (positive/passive), frustrated (negative/active), or bored (negative/passive). First, learners were able to recognize the emotional tone of the instructor in an instructional video lecture, particularly by more strongly rating a positive instructor as displaying positive emotions and a negative instructor as displaying negative emotions (in Experiments 1 and 2). Second, concerning building a social connection during learning, learners rated a positive instructor as more likely to facilitate learning, more credible, and more engaging than a negative instructor (in Experiments 1 and 2). Third, concerning cognitive engagement during learning, learners reported paying more attention during learning for a positive instructor than a negative instructor (in Experiments 1 and 2). Finally, concerning learning outcome, learners who had a positive instructor scored higher than learners who had a negative instructor on a delayed posttest (Experiment 2) but not an immediate posttest (Experiment 1). Overall, there is evidence for the positivity principle and the cognitive-affective model of e-learning from which it is derived.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    