We present a new method to simultaneously and self-consistently model the mass distribution of galaxy clusters that combines constraints from strong lensing features, X-ray emission, and galaxy kinematics measurements. We are able to successfully decompose clusters into their collisionless and collisional mass components thanks to the X-ray surface brightness, as well as use the dynamics of cluster members, to obtain more accurate masses exploiting the fundamental plane of elliptical galaxies. Knowledge from all observables is included through a consistent Bayesian approach in the likelihood or in physically motivated priors. We apply this method to the galaxy cluster Abell S1063 and produce a mass model that we publicly release with this paper. The resulting mass distribution presents different ellipticities for the intra-cluster gas and the other large-scale mass components as well as deviation from elliptical symmetry in the main halo. We assess the ability of our method to recover the masses of the different elements of the cluster using a mock cluster based on a simplified version of our Abell S1063 model. Thanks to the wealth of mutliwavelength information provided by the mass model and the detected X-ray emission, we also found evidence for an ongoing merger event with gas sloshing from a smaller infalling structure into the main cluster. In agreement with previous findings, the total mass, gas profile, and gas mass fraction are all consistent with small deviations from the hydrostatic equilibrium. This new mass model for Abell S1063 is publicly available, as the lenstool extension used to construct it.
more » « less- PAR ID:
- 10475132
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 527
- Issue:
- 2
- ISSN:
- 0035-8711
- Format(s):
- Medium: X Size: p. 3246-3275
- Size(s):
- p. 3246-3275
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)The pre-merging system of galaxy clusters Abell 3391-Abell 3395 located at a mean redshift of 0.053 has been observed at 1 GHz in an ASKAP/EMU Early Science observation as well as in X-rays with eROSITA. The projected separation of the X-ray peaks of the two clusters is ~50′ or ~3.1 Mpc. Here we present an inventory of interesting radio sources in this field around this cluster merger. While the eROSITA observations provide clear indications of a bridge of thermal gas between the clusters, neither ASKAP nor MWA observations show any diffuse radio emission coinciding with the X-ray bridge. We derive an upper limit on the radio emissivity in the bridge region of 〈 J 〉 1 GHz < 1.2 × 10 −44 W Hz −1 m −3 . A non-detection of diffuse radio emission in the X-ray bridge between these two clusters has implications for particle-acceleration mechanisms in cosmological large-scale structure. We also report extended or otherwise noteworthy radio sources in the 30 deg 2 field around Abell 3391-Abell 3395. We identified 20 Giant Radio Galaxies, plus 7 candidates, with linear projected sizes greater than 1 Mpc. The sky density of field radio galaxies with largest linear sizes of >0.7 Mpc is ≈1.7 deg −2 , three times higher than previously reported. We find no evidence for a cosmological evolution of the population of Giant Radio Galaxies. Moreover, we find seven candidates for cluster radio relics and radio halos.more » « less
-
We report the detection of CO emission in the recently discovered multiphase isolated gas cloud in the nearby galaxy cluster Abell 1367. The cloud is located about 800 kpc in projection from the center of the cluster and at a projected distance of > 80 kpc from any galaxy. It is the first and the only known isolated “intra-cluster” cloud detected in X-ray, H α , and CO emission. We found a total of about 2.2 × 10 8 M ⊙ of H 2 with the IRAM 30-m telescope in two regions, one associated with the peak of H α emission and another with the peak of X-ray emission surrounded by weak H α filaments. The velocity of the molecular gas is offset from the underlying H α emission by > 100 km s −1 in the region where the X-ray peaks. The molecular gas may account for about 10% of the total cloud’s mass, which is dominated by the hot X-ray component. The previously measured upper limit on the star formation rate in the cloud indicates that the molecular component is in a non-star-forming state, possibly due to a combination of low density of the gas and the observed level of velocity dispersion. The presence of the three gas phases associated with the cloud suggests that gas phase mixing with the surrounding intra-cluster medium is taking place. The possible origin of the orphan cloud is a late evolutionary stage of a ram pressure stripping event. In contrast, the nearby ram pressure stripped galaxy 2MASX J11443212+2006238 is in an early phase of stripping and we detected about 2.4 × 10 9 M ⊙ of H 2 in its main body.more » « less
-
ABSTRACT We present a multiwavelength observation of a cool core that does not appear to be associated with any galaxy, in a nearby cluster, Abell 1142. Its X-ray surface brightness peak of ≲2 keV is cooler than the ambient intracluster gas of ≳3 keV, and is offset from its brightest cluster galaxy (BCG) by 80 kpc in projection, representing the largest known cool core – BCG separation. This BCG-less cool core allows us to measure the metallicity of a cluster centre with a much-reduced contribution from the interstellar medium (ISM) of the BCG. XMM–Newton observation reveals a prominent Fe abundance peak of $1.07^{+0.16}_{-0.15}$ Z⊙ and an α/Fe abundance ratio close to the solar ratio, fully consistent with those found at the centres of typical cool core clusters. This finding hints that BCGs play a limited role in enriching the cluster centres. However, the discussion remains open, given that the α/Fe abundance ratios of the orphan cool core and the BCG ISM are not significantly different. Abell 1142 may have experienced a major merger more than 100 Myr ago, which has dissociated its cool core from the BCG. This implies that the Fe abundance peak in cool core clusters can be resilient to cluster mergers. Our recent Institut de Radio Astronomie Millimétrique 30-m observation did not detect any CO emission at its X-ray peak and we find no evidence for massive runaway cooling in the absence of recent active galactic nucleus feedback. The lack of a galaxy may contribute to an inefficient conversion of the ionized warm gas to the cold molecular gas.
-
ABSTRACT We evaluate the effectiveness of deep learning (DL) models for reconstructing the masses of galaxy clusters using X-ray photometry data from next-generation surveys. We establish these constraints using a catalogue of realistic mock eROSITA X-ray observations which use hydrodynamical simulations to model realistic cluster morphology, background emission, telescope response, and active galactic nucleus (AGN) sources. Using bolometric X-ray photon maps as input, DL models achieve a predictive mass scatter of $\sigma _{\ln M_\mathrm{500c}} = 17.8~{{\ \rm per\ cent}}$, a factor of two improvements on scalar observables such as richness Ngal, 1D velocity dispersion σv,1D, and photon count Nphot as well as a 32 per cent improvement upon idealized, volume-integrated measurements of the bolometric X-ray luminosity LX. We then show that extending this model to handle multichannel X-ray photon maps, separated in low, medium, and high energy bands, further reduces the mass scatter to 16.2 per cent. We also tested a multimodal DL model incorporating both dynamical and X-ray cluster probes and achieved marginal gains at a mass scatter of 15.9 per cent. Finally, we conduct a quantitative interpretability study of our DL models and find that they greatly down-weight the importance of pixels in the centres of clusters and at the location of AGN sources, validating previous claims of DL modelling improvements and suggesting practical and theoretical benefits for using DL in X-ray mass inference.
-
null (Ed.)Context. Inferences about dark matter, dark energy, and the missing baryons all depend on the accuracy of our model of large-scale structure evolution. In particular, with cosmological simulations in our model of the Universe, we trace the growth of structure, and visualize the build-up of bigger structures from smaller ones and of gaseous filaments connecting galaxy clusters. Aims. Here we aim to reveal the complexity of the large-scale structure assembly process in great detail and on scales from tens of kiloparsecs up to more than 10 Mpc with new sensitive large-scale observations from the latest generation of instruments. We also aim to compare our findings with expectations from our cosmological model. Methods. We used dedicated SRG/eROSITA performance verification (PV) X-ray, ASKAP/EMU Early Science radio, and DECam optical observations of a ~15 deg 2 region around the nearby interacting galaxy cluster system A3391/95 to study the warm-hot gas in cluster outskirts and filaments, the surrounding large-scale structure and its formation process, the morphological complexity in the inner parts of the clusters, and the (re-)acceleration of plasma. We also used complementary Sunyaev-Zeldovich (SZ) effect data from the Planck survey and custom-made Galactic total (neutral plus molecular) hydrogen column density maps based on the HI4PI and IRAS surveys. We relate the observations to expectations from cosmological hydrodynamic simulations from the Magneticum suite. Results. We trace the irregular morphology of warm and hot gas of the main clusters from their centers out to well beyond their characteristic radii, r 200 . Between the two main cluster systems, we observe an emission bridge on large scale and with good spatial resolution. This bridge includes a known galaxy group but this can only partially explain the emission. Most gas in the bridge appears hot, but thanks to eROSITA’s unique soft response and large field of view, we discover some tantalizing hints for warm, truly primordial filamentary gas connecting the clusters. Several matter clumps physically surrounding the system are detected. For the “Northern Clump,” we provide evidence that it is falling towards A3391 from the X-ray hot gas morphology and radio lobe structure of its central AGN. Moreover, the shapes of these X-ray and radio structures appear to be formed by gas well beyond the virial radius, r 100 , of A3391, thereby providing an indirect way of probing the gas in this elusive environment. Many of the extended sources in the field detected by eROSITA are also known clusters or new clusters in the background, including a known SZ cluster at redshift z = 1. We find roughly an order of magnitude more cluster candidates than the SPT and ACT surveys together in the same area. We discover an emission filament north of the virial radius of A3391 connecting to the Northern Clump. Furthermore, the absorption-corrected eROSITA surface brightness map shows that this emission filament extends south of A3395 and beyond an extended X-ray-emitting object (the “Little Southern Clump”) towards another galaxy cluster, all at the same redshift. The total projected length of this continuous warm-hot emission filament is 15 Mpc, running almost 4 degrees across the entire eROSITA PV observation field. The Northern and Southern Filament are each detected at >4 σ . The Planck SZ map additionally appears to support the presence of both new filaments. Furthermore, the DECam galaxy density map shows galaxy overdensities in the same regions. Overall, the new datasets provide impressive confirmation of the theoretically expected structure formation processes on the individual system level, including the surrounding warm-hot intergalactic medium distribution; the similarities of features found in a similar system in the Magneticum simulation are striking. Our spatially resolved findings show that baryons indeed reside in large-scale warm-hot gas filaments with a clumpy structure.more » « less