We analyze a sample of 25 [Ne
- Award ID(s):
- 1816537
- Publication Date:
- NSF-PAR ID:
- 10278178
- Journal Name:
- Astronomy & Astrophysics
- Volume:
- 651
- Page Range or eLocation-ID:
- A13
- ISSN:
- 0004-6361
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract v ] (λ 3426) emission-line galaxies at 1.4 <z < 2.3 using Hubble Space Telescope/Wide Field Camera 3 G102 and G141 grism observations from the CANDELS Lyα Emission at Reionization (CLEAR) survey. [Nev ] emission probes extremely energetic photoionization (creation potential of 97.11 eV) and is often attributed to energetic radiation from active galactic nuclei (AGNs), shocks from supernovae, or an otherwise very hard ionizing spectrum from the stellar continuum. In this work, we use [Nev ] in conjunction with other rest-frame UV/optical emission lines ([Oii ]λ λ 3726, 3729, [Neiii ]λ 3869, Hβ , [Oiii ]λ λ 4959, 5007, Hα +[Nii ]λ λ 6548, 6583, [Sii ]λ λ 6716, 6731), deep (2–7 Ms) X-ray observations (from Chandra), and mid-infrared imaging (from Spitzer) to study the origin of this emission and to place constraints on the nature of the ionizing engine. The majority of the [Nev ]-detected galaxies have properties consistent with ionization from AGNs. However, for our [Nev ]-selected sample, the X-ray luminosities are consistent with local (z ≲ 0.1) X-ray-selected Seyferts, but the [Nev ] luminosities are more consistent with those fromz ∼ 1 X-ray-selected QSOs. The excess [Nev ] emission requires either reduced hard X-rays or a ∼0.1 keV excess. We discuss possible origins of the apparent [Nev ] excess, which could be related to the “soft (X-ray) excess”more » -
Context. The electron density ( n e − ) plays an important role in setting the chemistry and physics of the interstellar medium. However, measurements of n e − in neutral clouds have been directly obtained only toward a few lines of sight or they rely on indirect determinations. Aims. We use carbon radio recombination lines and the far-infrared lines of C + to directly measure n e − and the gas temperature in the envelope of the integral shaped filament (ISF) in the Orion A molecular cloud. Methods. We observed the C102 α (6109.901 MHz) and C109 α (5011.420 MHz) carbon radio recombination lines (CRRLs) using the Effelsberg 100 m telescope at ≈2′ resolution toward five positions in OMC-2 and OMC-3. Since the CRRLs have similar line properties, we averaged them to increase the signal-to-noise ratio of the spectra. We compared the intensities of the averaged CRRLs, and the 158 μm-[CII] and [ 13 CII] lines to the predictions of a homogeneous model for the C + /C interface in the envelope of a molecular cloud and from this comparison we determined the electron density, temperature and C + column density of the gas. Results. We detect the CRRLs towardmore »
-
Context. Ionized interstellar gas is an important component of the interstellar medium and its lifecycle. The recent evidence for a widely distributed highly ionized warm interstellar gas with a density intermediate between the warm ionized medium (WIM) and compact H II regions suggests that there is a major gap in our understanding of the interstellar gas. Aims. Our goal is to investigate the properties of the dense WIM in the Milky Way using spectrally resolved SOFIA GREAT [N II ] 205 μm fine-structure lines and Green Bank Telescope hydrogen radio recombination lines (RRL) data, supplemented by spectrally unresolved Herschel PACS [N II ] 122μm data, and spectrally resolved 12 CO. Methods. We observed eight lines of sight (LOS) in the 20° < l < 30° region in the Galactic plane. We analyzed spectrally resolved lines of [N II ] at 205 μm and RRL observations, along with the spectrally unresolved Herschel PACS 122 μm emission, using excitation and radiative transfer models to determine the physical parameters of the dense WIM. We derived the kinetic temperature, as well as the thermal and turbulent velocity dispersions from the [N II ] and RRL linewidths. Results. The regions with [N II ] 205more »
-
Abstract We present reverberation mapping measurements for the prominent ultraviolet broad emission lines of the active galactic nucleus Mrk 817 using 165 spectra obtained with the Cosmic Origins Spectrograph on the Hubble Space Telescope. Our ultraviolet observations are accompanied by X-ray, optical, and near-infrared observations as part of the AGN Space Telescope and Optical Reverberation Mapping Program 2 (AGN STORM 2). Using the cross-correlation lag analysis method, we find significant correlated variations in the continuum and emission-line light curves. We measure rest-frame delayed responses between the far-ultraviolet continuum at 1180 Å and Ly α λ 1215 Å ( 10.4 − 1.4 + 1.6 days), N v λ 1240 Å ( 15.5 − 4.8 + 1.0 days), Si iv + ]O iv λ 1397 Å ( 8.2 − 1.4 + 1.4 days), C iv λ 1549 Å ( 11.8 − 2.8 + 3.0 days), and He ii λ 1640 Å ( 9.0 − 1.9 + 4.5 days) using segments of the emission-line profile that are unaffected by absorption and blending, which results in sampling different velocity ranges for each line. However, we find that the emission-line responses to continuum variations are more complex than a simple smoothed, shifted, and scaled versionmore »
-
Abstract The nearby, luminous infrared galaxy NGC 7469 hosts a Seyfert nucleus with a circumnuclear star-forming ring and is thus the ideal local laboratory for investigating the starburst–AGN (active galactic nucleus) connection in detail. We present integral-field observations of the central 1.3 kpc region in NGC 7469 obtained with the JWST Mid-InfraRed Instrument. Molecular and ionized gas distributions and kinematics at a resolution of ∼100 pc over the 4.9–7.6
μ m region are examined to study the gas dynamics influenced by the central AGN. The low-ionization [Feii ]λ 5.34μ m and [Arii ]λ 6.99μ m lines are bright on the nucleus and in the starburst ring, as opposed to H2S(5)λ 6.91μ m, which is strongly peaked at the center and surrounding ISM. The high-ionization [Mgv ] line is resolved and shows a broad, blueshifted component associated with the outflow. It has a nearly face-on geometry that is strongly peaked on the nucleus, where it reaches a maximum velocity of −650 km s−1, and extends about 400 pc to the east. Regions of enhanced velocity dispersion in H2and [Feii ] ∼ 180 pc from the AGN that also show highL (H2)/L (PAH) andL ([Feii ])/L (Pfα ) ratios to the W and N of the nucleus pinpoint regions where the ionized outflow is depositing energy, via shocks, into themore »