IntroductionReconstructing low-level particle tracks in neutrino physics can address some of the most fundamental questions about the universe. However, processing petabytes of raw data using deep learning techniques poses a challenging problem in the field of High Energy Physics (HEP). In the Exa.TrkX Project, an illustrative HEP application, preprocessed simulation data is fed into a state-of-art Graph Neural Network (GNN) model, accelerated by GPUs. However, limited GPU memory often leads to Out-of-Memory (OOM) exceptions during training, due to the large size of models and datasets. This problem is exacerbated when deploying models on High-Performance Computing (HPC) systems designed for large-scale applications. MethodsWe observe a high workload imbalance issue during GNN model training caused by the irregular sizes of input graph samples in HEP datasets, contributing to OOM exceptions. We aim to scale GNNs on HPC systems, by prioritizing workload balance in graph inputs while maintaining model accuracy. Our paper introduces diverse balancing strategies aimed at decreasing the maximum GPU memory footprint and avoiding the OOM exception, across various datasets. ResultsOur experiments showcase memory reduction of up to 32.14% compared to the baseline. We also demonstrate the proposed strategies can avoid OOM in application. Additionally, we create a distributed multi-GPU implementation using these samplers to demonstrate the scalability of these techniques on the HEP dataset. DiscussionBy assessing the performance of these strategies as data loading samplers across multiple datasets, we can gauge their effectiveness in both single-GPU and distributed environments. Our experiments, conducted on datasets of varying sizes and across multiple GPUs, broaden the applicability of our work to various GNN applications that handle input datasets with irregular graph sizes.
more »
« less
A Simple and Efficient Baseline for Data Attribution on Images
Data attribution methods play a crucial role in understanding machine learning models, providing insight into which training data points are most responsible for model outputs during deployment. However, current state-of-the-art approaches require a large ensemble of as many as 300,000 models to accurately attribute model predictions. These approaches therefore come at a high computational cost, are memory intensive, and are hard to scale to large models or datasets. In this work, we focus on a minimalist baseline, utilizing the feature space of a backbone pretrained via self-supervised learning to perform data attribution. Our method is model-agnostic and scales easily to large datasets. We show results on CIFAR-10 and ImageNet, achieving strong performance that rivals or outperforms state-of-the-art approaches at a fraction of the compute or memory cost. Contrary to prior work, our results reinforce the intuition that a model's prediction on one image is most impacted by visually similar training samples. Our approach serves as a simple and efficient baseline for data attribution on images.
more »
« less
- Award ID(s):
- 2229885
- PAR ID:
- 10522358
- Publisher / Repository:
- NeurIPS 2023 Workshop ATTRIB
- Date Published:
- Format(s):
- Medium: X
- Location:
- New Orleans, LA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Neural network pruning is an essential technique for reducing the size and complexity of deep neural networks, enabling large-scale models on devices with limited resources. However, existing pruning approaches heavily rely on training data for guiding the pruning strategies, making them ineffective for federated learning over distributed and confidential datasets. Additionally, the memory- and computation-intensive pruning process becomes infeasible for recourse-constrained devices in federated learning. To address these challenges, we propose FedTiny, a distributed pruning framework for federated learning that generates specialized tiny models for memory-and computing-constrained devices. We introduce two key modules in FedTiny to adaptively search coarse- and finer-pruned specialized models to fit deployment scenarios with sparse and cheap local computation. First, an adaptive batch normalization selection module is designed to mitigate biases in pruning caused by the heterogeneity of local data. Second, a lightweight progressive pruning module aims to finer prune the models under strict memory and computational budgets, allowing the pruning policy for each layer to be gradually determined rather than evaluating the overall model structure. The experimental results demonstrate the effectiveness of FedTiny, which outperforms state-of-the-art approaches, particularly when compressing deep models to extremely sparse tiny models. FedTiny achieves an accuracy improvement of 2.61% while significantly reducing the computational cost by 95.91% and the memory footprint by 94.01% compared to state-of-the-art methods.more » « less
-
Nowadays, one practical limitation of deep neural network (DNN) is its high degree of specialization to a single task or domain (e.g., one visual domain). It motivates researchers to develop algorithms that can adapt DNN model to multiple domains sequentially, while still performing well on the past domains, which is known as multi-domain learning. Almost all conventional methods only focus on improving accuracy with minimal parameter update, while ignoring high computing and memory cost during training, which makes it difficult to deploy multi-domain learning into more and more widely used resource-limited edge devices, like mobile phone, IoT, embedded system, etc. During our study in multi-domain training process, we observe that large memory used for activation storage is the bottleneck that largely limits the training time and cost on edge devices. To reduce training memory usage, while keeping the domain adaption accuracy performance, we propose Dynamic Additive Attention Adaption (DA3), a novel memory-efficient on-device multi-domain learning method. DA3 learns a novel additive attention adaptor module, while freezing the weights of the pre-trained backbone model for each domain. Differentiating from prior works, such module not only mitigates activation memory buffering for reducing memory usage during training, but also serves as a dynamic gating mechanism to reduce the computation cost for fast inference. We validate DA3 on multiple datasets against state-of-the-art methods, which shows great improvement in both accuracy and training time. Moreover, we deployed DA3 into the popular NIVDIA Jetson Nano edge GPU, where the measured experimental results show our proposed \mldam reduces the on-device training memory consumption by 19x-37x, and training time by 2x, in comparison to the baseline methods (e.g., standard fine-tuning, Parallel and Series Res. adaptor, and Piggyback).more » « less
-
Abstract Most semantic segmentation approaches of big data hyperspectral images use and require preprocessing steps in the form of patching to accurately classify diversified land cover in remotely sensed images. These approaches use patching to incorporate the rich spatial neighborhood information in images and exploit the simplicity and segmentability of the most common datasets. In contrast, most landmasses in the world consist of overlapping and diffused classes, making neighborhood information weaker than what is seen in common datasets. To combat this common issue and generalize the segmentation models to more complex and diverse hyperspectral datasets, in this work, we propose a novel flagship model: Clustering Ensemble U-Net. Our model uses the ensemble method to combine spectral information extracted from convolutional neural network training on a cluster of landscape pixels. Our model outperforms existing state-of-the-art hyperspectral semantic segmentation methods and gets competitive performance with and without patching when compared to baseline models. We highlight our model’s high performance across six popular hyperspectral datasets including Kennedy Space Center, Houston, and Indian Pines, then compare them to current top-performing models.more » « less
-
Graph Neural Networks (GNNs) have achieved remarkable accuracy in cognitive tasks such as predictive analytics on graph-structured data. Hence, they have become very popular in diverse real-world applications. However, GNN training with large real-world graph datasets in edge-computing scenarios is both memory- and compute-intensive. Traditional computing platforms such as CPUs and GPUs do not provide the energy efficiency and low latency required in edge intelligence applications due to their limited memory bandwidth. Resistive random-access memory (ReRAM)-based processing-in-memory (PIM) architectures have been proposed as suitable candidates for accelerating AI applications at the edge, including GNN training. However, ReRAM-based PIM architectures suffer from low reliability due to their limited endurance, and low performance when they are used for GNN training in real-world scenarios with large graphs. In this work, we propose a learning-for-data-pruning framework, which leverages a trained Binary Graph Classifier (BGC) to reduce the size of the input data graph by pruning subgraphs early in the training process to accelerate the GNN training process on ReRAM-based architectures. The proposed light-weight BGC model reduces the amount of redundant information in input graph(s) to speed up the overall training process, improves the reliability of the ReRAM-based PIM accelerator, and reduces the overall training cost. This enables fast, energy-efficient, and reliable GNN training on ReRAM-based architectures. Our experimental results demonstrate that using this learning for data pruning framework, we can accelerate GNN training and improve the reliability of ReRAM-based PIM architectures by up to 1.6×, and reduce the overall training cost by 100× compared to state-of-the-art data pruning techniques.more » « less
An official website of the United States government

