skip to main content

Title: A Quasar-based Supermassive Black Hole Binary Population Model: Implications for the Gravitational Wave Background

The nanohertz gravitational wave background (GWB) is believed to be dominated by GW emission from supermassive black hole binaries (SMBHBs). Observations of several dual-active galactic nuclei (AGN) strongly suggest a link between AGN and SMBHBs, given that these dual-AGN systems will eventually form bound binary pairs. Here we develop an exploratory SMBHB population model based on empirically constrained quasar populations, allowing us to decompose the GWB amplitude into an underlying distribution of SMBH masses, SMBHB number density, and volume enclosing the GWB. Our approach also allows us to self-consistently predict the number of local SMBHB systems from the GWB amplitude. Interestingly, we find the local number density of SMBHBs implied by the common-process signal in the NANOGrav 12.5-yr data set to be roughly five times larger than previously predicted by other models. We also find that at most ∼25% of SMBHBs can be associated with quasars. Furthermore, our quasar-based approach predicts ≳95% of the GWB signal comes fromz≲ 2.5, and that SMBHBs contributing to the GWB have masses ≳108M. We also explore how different empirical galaxy–black hole scaling relations affect the local number density of GW sources, and find that relations predicting more massive black holes decrease the local more » number density of SMBHBs. Overall, our results point to the important role that a measurement of the GWB will play in directly constraining the cosmic population of SMBHBs, as well as their connections to quasars and galaxy mergers.

« less
; ; ; ; ;
Award ID(s):
2020265 2106453 2106552
Publication Date:
Journal Name:
The Astrophysical Journal
Page Range or eLocation-ID:
Article No. 93
DOI PREFIX: 10.3847
Sponsoring Org:
National Science Foundation
More Like this
  1. Supermassive black hole binaries (SMBHBs) are an inevitable consequence of galaxy mergers. At sub-parsec separations, they are practically impossible to resolve and the most promising technique is to search for quasars with periodic variability. However, searches for quasar periodicity in time-domain data are challenging due to the stochastic variability of quasars. In this paper, we used Bayesian methods to disentangle periodic SMBHB signals from intrinsic damped random walk (DRW) variability in AGN light curves. We simulated a wide variety of realistic DRW and DRW+sine light curves. Their observed properties are modeled after the Catalina Real-time Transient Survey (CRTS) and expected properties of the upcoming Legacy Survey of Space and Time (LSST) from the Vera C. Rubin Observatory. Through a careful analysis of parameter estimation and Bayesian model selection, we investigated the range of parameter space for which binary systems can be detected. We also examined which DRW signals can mimic periodicity and be falsely classified as binary candidates. We found that periodic signals are more easily detectable if the period is short or the amplitude of the signal is large compared to the contribution of the DRW noise. We saw similar detection rates both in the CRTS and LSST-like simulations,more »while the false detection rate depends on the quality of the data and is minimal in LSST. Our idealized simulations provide an excellent way to uncover the intrinsic limitations in quasar periodicity searches and set the stage for future searches for SMBHBs.« less

    The James Webb Space Telescope will have the power to characterize high-redshift quasars at z ≥ 6 with an unprecedented depth and spatial resolution. While the brightest quasars at such redshift (i.e. with bolometric luminosity $L_{\rm bol}\geqslant 10^{46}\, \rm erg/s$) provide us with key information on the most extreme objects in the Universe, measuring the black hole (BH) mass and Eddington ratios of fainter quasars with $L_{\rm bol}= 10^{45}-10^{46}\, \rm erg\,s^{ -1}$ opens a path to understand the build-up of more normal BHs at z ≥ 6. In this paper, we show that the Illustris, TNG100, TNG300, Horizon-AGN, EAGLE, and SIMBA large-scale cosmological simulations do not agree on whether BHs at z ≥ 4 are overmassive or undermassive at fixed galaxy stellar mass with respect to the MBH − M⋆ scaling relation at z = 0 (BH mass offsets). Our conclusions are unchanged when using the local scaling relation produced by each simulation or empirical relations. We find that the BH mass offsets of the simulated faint quasar population at z ≥ 4, unlike those of bright quasars, represent the BH mass offsets of the entire BH population, for all the simulations. Thus, a population of faint quasars withmore »$L_{\rm bol}= 10^{45}-10^{46}\, \rm erg\,s^{ -1}$ observed by JWST can provide key constraints on the assembly of BHs at high redshift. Moreover, this will help constraining the high-redshift regime of cosmological simulations, including BH seeding, early growth, and co-evolution with the host galaxies. Our results also motivate the need for simulations of larger cosmological volumes down to z ∼ 6, with the same diversity of subgrid physics, in order to gain statistics on the most extreme objects at high redshift.

    « less
  3. Abstract

    The statistics of galactic-scale quasar pairs can elucidate our understanding of the dynamical evolution of supermassive black hole (SMBH) pairs, the duty cycles of quasar activity in mergers, or even the nature of dark matter, but they have been challenging to measure at cosmic noon, the prime epoch of massive galaxy and SMBH formation. Here we measure a double quasar fraction of ∼6.2 ± 0.5 × 10−4integrated over ∼0.″3–3″ separations (projected physical separations of ∼3–30 kpc atz∼ 2) in luminous (Lbol> 1045.8erg s−1) unobscured quasars at 1.5 <z< 3.5 using Gaia EDR3-resolved pairs around SDSS DR16 quasars. The measurement was based on a sample of 60 Gaia-resolved double quasars (out of 487 Gaia pairs dominated by quasar+star superpositions) at these separations, corrected for pair completeness in Gaia, which we quantify as functions of pair separation, magnitude of the primary, and magnitude contrast. The double quasar fraction increases toward smaller separations by a factor of ∼5 over these scales. The division between physical quasar pairs and lensed quasars in our sample is currently unknown, requiring dedicated follow-up observations (in particular, deep, subarcsecond-resolution IR imaging for the closest pairs). Intriguingly, at this point, the observed pair statistics are in rough agreementmore »with theoretical predictions both for the lensed quasar population in mock catalogs and for dual quasars in cosmological hydrodynamic simulations. Upcoming wide-field imaging/spectroscopic space missions such as Euclid, CSST, and Roman, combined with targeted follow-up observations, will conclusively measure the abundances and host galaxy properties of galactic-scale quasar pairs, offset AGNs, and subarcsecond lensed quasars across cosmic time.

    « less
  4. Abstract

    The accretion disks of active galactic nuclei (AGNs) are promising locations for the merger of compact objects detected by gravitational wave (GW) observatories. Embedded within a baryon-rich, high-density environment, mergers within AGNs are the only GW channel where an electromagnetic (EM) counterpart must occur (whether detectable or not). Considering AGNs with unusual flaring activity observed by the Zwicky Transient Facility (ZTF), we describe a search for candidate EM counterparts to binary black hole (BBH) mergers detected by LIGO/Virgo in O3. After removing probable false positives, we find nine candidate counterparts to BBH mergers during O3 (seven in O3a, two in O3b) with ap-value of 0.0019. Based on ZTF sky coverage, AGN geometry, and merger geometry, we expect ≈3(NBBH/83)(fAGN/0.5) potentially detectable EM counterparts from O3, whereNBBHis the total number of observed BBH mergers andfAGNis the fraction originating in AGNs. Further modeling of breakout and flaring phenomena in AGN disks is required to reduce our false-positive rate. Two of the events are also associated with mergers with total masses >100M, which is the expected rate for O3 if hierarchical (large-mass) mergers occur in the AGN channel. Candidate EM counterparts in future GW observing runs can be better constrained by coverage ofmore »the Southern sky as well as spectral monitoring of unusual AGN flaring events in LIGO/Virgo alert volumes. A future set of reliable AGN EM counterparts to BBH mergers will yield an independent means of measuring cosmic expansion (H0) as a function of redshift.

    « less
  5. Abstract

    We use medium-resolution Keck/Echellette Spectrograph and Imager spectroscopy of bright quasars to study cool gas traced by Caiiλλ3934, 3969 and Naiλλ5891, 5897 absorption in the interstellar/circumgalactic media of 21 foreground star-forming galaxies at redshifts 0.03 <z< 0.20 with stellar masses 7.4 ≤ logM*/M≤ 10.6. The quasar–galaxy pairs were drawn from a unique sample of Sloan Digital Sky Survey quasar spectra with intervening nebular emission, and thus have exceptionally close impact parameters (R< 13 kpc). The strength of this line emission implies that the galaxies’ star formation rates (SFRs) span a broad range, with several lying well above the star-forming sequence. We use Voigt profile modeling to derive column densities and component velocities for each absorber, finding that column densitiesN(Caii) > 1012.5cm−2(N(Nai) > 1012.0cm−2) occur with an incidencefC(Caii) = 0.63+0.10−0.11(fC(Nai) = 0.57+0.10−0.11). We find no evidence for a dependence offCor the rest-frame equivalent widthsWr(CaiiK) orWr(Nai5891) onRorM*. Instead,Wr(CaiiK) is correlated with local SFR at >3σsignificance, suggesting that Caiitraces star formation-driven outflows. While most of the absorbers have velocities within ±50 km s−1of the host redshift, their velocity widths (characterized by Δv90) are universally 30–177 km s−1larger than that implied by tilted-ring modeling of the velocities of interstellar material. These kinematics mustmore »trace galactic fountain flows and demonstrate that they persist atR> 5 kpc. Finally, we assess the relationship between dust reddening andWr(CaiiK) (Wr(Nai5891)), finding that 33% (24%) of the absorbers are inconsistent with the best-fit Milky WayE(B−V)-Wrrelations at >3σsignificance.

    « less