skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fitting fangs in a finite face: A novel fang accommodation strategy in a 280‐million‐year‐old ray‐finned fish
Abstract Though Paleozoic ray‐finned fishes are considered to be morphologically conservative, we report a novel mode of fang accommodation (i.e., the fitting of fangs inside the jaw) in the Permian actinopterygian †Brazilichthys macrognathus, whereby the teeth of the lower jaw insert into fenestrae of the upper jaw. To better understand how fishes have accommodated lower jaw fangs through geologic time, we synthesize the multitude of ways living and extinct osteichthyans have housed large mandibular dentition. While the precise structure of fang accommodation seen in †Brazilichthyshas not been reported in any other osteichthyans, alternate strategies of upper jaw fenestration to fit mandibular fangs are present in some extant ray‐finned fishes—the needlejawsAcestrorhynchusand the gars of the genusLepisosteus. Notably, out of our survey, only the two aforementioned neopterygians bear upper jaw fenestration for the accommodation of mandibular fangs. We implicate the kinetic jaws of neopterygians in this trend, whereby large mandibular fangs are more easily fit between the multitude of upper jaw and palatal bones. The restricted space available in early osteichthyan jaws may have led to a proliferation of novel ways to accommodate large dentition. We recommend a greater survey of Paleozoic actinopterygian jaw morphology, in light of these results and other recent reevaluations of jaw structure in early fossil ray‐fins.  more » « less
Award ID(s):
1701665
PAR ID:
10475204
Author(s) / Creator(s):
;
Publisher / Repository:
Journal of Anatomy
Date Published:
Journal Name:
Journal of Anatomy
Volume:
242
Issue:
3
ISSN:
0021-8782
Page Range / eLocation ID:
525 to 534
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Durophagous predators consume hard‐shelled prey such as bivalves, gastropods, and large crustaceans, typically by crushing the mineralized exoskeleton. This is costly from the point of view of the bite forces involved, handling times, and the stresses inflicted on the predator's skeleton. It is not uncommon for durophagous taxa to display an ontogenetic shift from softer to harder prey items, implying that it is relatively difficult for smaller animals to consume shelled prey. Batoid fishes (rays, skates, sawfishes, and guitarfishes) have independently evolved durophagy multiple times, despite the challenges associated with crushing prey harder than their own cartilaginous skeleton.Potamotrygon leopoldiis a durophagous freshwater ray endemic to the Xingu River in Brazil, with a jaw morphology superficially similar to its distant durophagous marine relatives, eagle rays (e.g.,Aetomylaeus, Aetobatus). We used second moment of area as a proxy for the ability to resist bending and analyzed the arrangement of the mineralized skeleton of the jaw ofP. leopoldiover ontogeny using data from computed tomography (CT) scans. The jaws ofP. leopoldido not resist bending nearly as well as other durophagous elasmobranchs, and the jaws are stiffest nearest the joints rather than beneath the dentition. While second moment has similar material distribution over ontogeny, mineralization of the jaws under the teeth increases with age. Neonate rays have low jaw stiffness and poor mineralization, suggesting thatP. leopoldimay not feed on hard‐shelled prey early in life. These differences in the shape, stiffness and mineralization of the jaws ofP. leopoldicompared to its durophagous relatives show there are several solutions to the problem of crushing shelled prey with a compliant skeleton. 
    more » « less
  2. Almost nothing is known about the diets of bathypelagic fishes, but functional morphology can provide useful tools to infer ecology. Here we quantify variation in jaw and tooth morphologies across anglerfishes (Lophiiformes), a clade spanning shallow and deep-sea habitats. Deep-sea ceratioid anglerfishes are considered dietary generalists due to the necessity of opportunistic feeding in the food-limited bathypelagic zone. We found unexpected diversity in the trophic morphologies of ceratioid anglerfishes. Ceratioid jaws span a functional continuum ranging from species with numerous stout teeth, a relatively slow but forceful bite, and high jaw protrusibility at one end (characteristics shared with benthic anglerfishes) to species with long fang-like teeth, a fast but weak bite and low jaw protrusibility at the other end (including a unique ‘wolftrap’ phenotype). Our finding of high morphological diversity seems to be at odds with ecological generality, reminiscent of Liem's paradox (morphological specialization allowing organisms to have broader niches). Another possible explanation is that diverse ceratioid functional morphologies may yield similar trophic success (many-to-one mapping of morphology to diet), allowing diversity to arise through neutral evolutionary processes. Our results highlight that there are many ways to be a successful predator in the deep sea. 
    more » « less
  3. null (Ed.)
    The lower jaw of the holotype of Adalatherium hui, from the Late Cretaceous of Madagascar, is the most complete yet known for a gondwanatherian mammal. It reveals for the first time the morphology of the character-rich ascending ramus of the dentary in a gondwanatherian. Each half of the lower jaw is composed of only one bone, the dentary, which is short and deep and houses only five teeth: an enlarged, procumbent incisor and four postcanine teeth. In comparable parts of its anatomy, the dentary of Adalatherium is strikingly similar to that of Sudamerica but differs slightly from that of Galulatherium (conformation anterior to first postcanine, mental foramen position), the only two other gondwanatherians represented by complete horizontal rami. Among other Mesozoic mammaliaform taxa, the dentary of Adalatherium is most similar to those of the largely Laurasian group Multituberculata, most notably in absence of postdentary trough and Meckelian sulcus; presence of short, deep dentary with sizable diastema and articulating with squamosal via mediolaterally narrow condyle that continues onto posterior surface (i.e., no distinct peduncle); possession of much reduced dentition; absence of angular process; possession of large pterygoid fossa and pterygoid shelf, ventral surface of which is flat; absence of coronoid bone; and possession of unfused mandibular symphysis. Most of these features are clearly derived and stand in stark contrast to the much more plesiomorphic morphology exhibited by the lower jaw of the haramiyaviid Haramiyavia. The lower jaws of euharamiyidans, although derived in their own right, are also relatively plesiomorphic. 
    more » « less
  4. Abstract Actinopterygii is a major extant vertebrate group, but limited data are available for its earliest members. Here we investigate the morphology of Devonian actinopterygians, focusing on the lower jaw. We use X‐ray computed tomography (XCT) to provide comprehensive descriptions of the mandibles of 19 species, which span the whole of the Devonian and represent roughly two‐thirds of all taxa known from more than isolated or fragmentary material. Our findings corroborate previous reports in part but reveal considerable new anatomical data and represent the first detailed description for roughly half of these taxa. The mandibles display substantial variation in size, spanning more than an order of magnitude. Although most conform to a generalized pattern of a large dentary and one or two smaller infradentaries, XCT data reveal significant differences in the structure of the jaw and arrangement of teeth that may be of functional relevance. We report the presence of a rudimentary coronoid process in several taxa, contributed to by the dentary and/or infradentaries, as well a raised articular region, resulting in a mandible with an offset bite and that functions as a bent level arm. Among the most striking variation is that of tooth morphology: several taxa have heterodont dentary teeth that vary in size and orientation, and multiple variations on enlarged, whorl‐like and posteriorly‐oriented anterior coronoid dentition are observed. We use these new data to revise morphological characters that may be of phylogenetic significance and consider the possible functional implicationds of these traits. The observed variation in mandible form and structure suggests previously unappreciated functional diversity among otherwise morphologically homogenous Devonian ray‐finned fishes. 
    more » « less
  5. Abstract Fossoriality evolved early in snakes, and has left its signature on the cranial morphology of many extinct Mesozoic and early Caenozoic forms. Knowledge of the cranial osteology of extant snakes is indispensable for associating the crania of extinct lineages with a particular mode of life; this applies to fossorial taxa as well. In the present work, we provide a detailed description of the cranium ofHypoptophis wilsonii, a member of the subfamily Aparallactinae, using micro‐computed tomography (CT). This is also the first thorough micro‐CT‐based description of any snake assigned to this African subfamily of predominantly mildly venomous, fossorial, and elusive snakes. The cranium ofHypoptophisis adapted for a fossorial lifestyle, with increased consolidation of skull bones. Aparallactines show a tendency toward reduction of maxillary length by bringing the rear fangs forward. This development attains its pinnacle in the sister subfamily Atractaspidinae, in which the rear fang has become the “front fang” by a loss of the part of the maxilla lying ahead of the fang. These dentitional changes likely reflect adaptation to subdue prey in snug burrows. An endocast of the inner ear ofHypoptophisshows that this genus has the inner ear typical of fossorial snakes, with a large, globular sacculus. A phylogenetic analysis based on morphology recoversHypoptophisas a sister taxon toAparallactus. We also discuss the implications of our observations on the burrowing origin hypothesis of snakes. 
    more » « less