skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fitting fangs in a finite face: A novel fang accommodation strategy in a 280‐million‐year‐old ray‐finned fish
Abstract Though Paleozoic ray‐finned fishes are considered to be morphologically conservative, we report a novel mode of fang accommodation (i.e., the fitting of fangs inside the jaw) in the Permian actinopterygian †Brazilichthys macrognathus, whereby the teeth of the lower jaw insert into fenestrae of the upper jaw. To better understand how fishes have accommodated lower jaw fangs through geologic time, we synthesize the multitude of ways living and extinct osteichthyans have housed large mandibular dentition. While the precise structure of fang accommodation seen in †Brazilichthyshas not been reported in any other osteichthyans, alternate strategies of upper jaw fenestration to fit mandibular fangs are present in some extant ray‐finned fishes—the needlejawsAcestrorhynchusand the gars of the genusLepisosteus. Notably, out of our survey, only the two aforementioned neopterygians bear upper jaw fenestration for the accommodation of mandibular fangs. We implicate the kinetic jaws of neopterygians in this trend, whereby large mandibular fangs are more easily fit between the multitude of upper jaw and palatal bones. The restricted space available in early osteichthyan jaws may have led to a proliferation of novel ways to accommodate large dentition. We recommend a greater survey of Paleozoic actinopterygian jaw morphology, in light of these results and other recent reevaluations of jaw structure in early fossil ray‐fins.  more » « less
Award ID(s):
1701665
PAR ID:
10475204
Author(s) / Creator(s):
;
Publisher / Repository:
Journal of Anatomy
Date Published:
Journal Name:
Journal of Anatomy
Volume:
242
Issue:
3
ISSN:
0021-8782
Page Range / eLocation ID:
525 to 534
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Gill-skeleton modifications for processing prey represent a major source of functional innovation in living ray-finned fishes. Here we present the oldest actinopterygian tongue bite, derived from the gill skeleton, in the Middle Pennsylvanian (approx. 310 Ma) †Platysomus parvulus. Unrelated to extant tongue biters, this deep-bodied taxon possesses a large, multipartite basibranchial tooth plate opposing an upper tooth field centred on the vomer. This branchial structure occurs in conjunction with toothed jaws, indicating a role for both the basibranchial plate and jaws in feeding. †P. parvulusillustrates the assembly of the tongue bite in the geologically younger †Bobasatraniidae: large opposing dorsal (vomerine) and ventral (basibranchial) crushing plates associated with toothless jaws. The origin of tongue bites falls within the Carboniferous actinopterygian radiation, although it postdates the first signs of the consumption of hard prey (durophagy) in other ray-finned lineages by several million years. This lends support to a protracted model of actinopterygian diversification in the aftermath of the end-Devonian extinction. 
    more » « less
  2. Abstract Durophagous predators consume hard‐shelled prey such as bivalves, gastropods, and large crustaceans, typically by crushing the mineralized exoskeleton. This is costly from the point of view of the bite forces involved, handling times, and the stresses inflicted on the predator's skeleton. It is not uncommon for durophagous taxa to display an ontogenetic shift from softer to harder prey items, implying that it is relatively difficult for smaller animals to consume shelled prey. Batoid fishes (rays, skates, sawfishes, and guitarfishes) have independently evolved durophagy multiple times, despite the challenges associated with crushing prey harder than their own cartilaginous skeleton.Potamotrygon leopoldiis a durophagous freshwater ray endemic to the Xingu River in Brazil, with a jaw morphology superficially similar to its distant durophagous marine relatives, eagle rays (e.g.,Aetomylaeus, Aetobatus). We used second moment of area as a proxy for the ability to resist bending and analyzed the arrangement of the mineralized skeleton of the jaw ofP. leopoldiover ontogeny using data from computed tomography (CT) scans. The jaws ofP. leopoldido not resist bending nearly as well as other durophagous elasmobranchs, and the jaws are stiffest nearest the joints rather than beneath the dentition. While second moment has similar material distribution over ontogeny, mineralization of the jaws under the teeth increases with age. Neonate rays have low jaw stiffness and poor mineralization, suggesting thatP. leopoldimay not feed on hard‐shelled prey early in life. These differences in the shape, stiffness and mineralization of the jaws ofP. leopoldicompared to its durophagous relatives show there are several solutions to the problem of crushing shelled prey with a compliant skeleton. 
    more » « less
  3. Almost nothing is known about the diets of bathypelagic fishes, but functional morphology can provide useful tools to infer ecology. Here we quantify variation in jaw and tooth morphologies across anglerfishes (Lophiiformes), a clade spanning shallow and deep-sea habitats. Deep-sea ceratioid anglerfishes are considered dietary generalists due to the necessity of opportunistic feeding in the food-limited bathypelagic zone. We found unexpected diversity in the trophic morphologies of ceratioid anglerfishes. Ceratioid jaws span a functional continuum ranging from species with numerous stout teeth, a relatively slow but forceful bite, and high jaw protrusibility at one end (characteristics shared with benthic anglerfishes) to species with long fang-like teeth, a fast but weak bite and low jaw protrusibility at the other end (including a unique ‘wolftrap’ phenotype). Our finding of high morphological diversity seems to be at odds with ecological generality, reminiscent of Liem's paradox (morphological specialization allowing organisms to have broader niches). Another possible explanation is that diverse ceratioid functional morphologies may yield similar trophic success (many-to-one mapping of morphology to diet), allowing diversity to arise through neutral evolutionary processes. Our results highlight that there are many ways to be a successful predator in the deep sea. 
    more » « less
  4. Abstract The Carboniferous radiation of fishes was marked by the convergent appearance of then-novel but now common ecomorphologies resulting from changes in the relative proportions of traits, including elongation of the front of the skull (rostrum). The earliest ray-finned fishes (Actinopterygii) with elongate rostra are poorly known, obscuring the earliest appearances of a now widespread feature in actinopterygians. We redescribe Tanyrhinichthys mcallisteri, a long-rostrumed actinopterygian from the Upper Pennsylvanian (Missourian) of the Kinney Brick Quarry, New Mexico. Tanyrhinichthys has a lengthened rostrum bearing a sensory canal, ventrally inserted paired fins, posteriorly placed median fins unequal in size and shape, and a heterocercal caudal fin. Tanyrhinichthys shares these features with sturgeons, but lacks chondrostean synapomorphies, indicating convergence on a bottom-feeding lifestyle. Elongate rostra evolved independently in two lineages of bottom-dwelling, freshwater actinopterygians in the Late Pennsylvanian of Euramerica, as well as in at least one North American chondrichthyan (Bandringa rayi). The near-simultaneous appearance of novel ecomorphologies among multiple, distantly related lineages of actinopterygians and chondrichthyans was common during the Carboniferous radiation of fishes. This may reflect global shifts in marine and freshwater ecosystems and environments during the Carboniferous favouring such ecomorphologies, or it may have been contingent on the plasticity of early actinopterygians and chondrichthyans. 
    more » « less
  5. Abstract Actinopterygii is a major extant vertebrate group, but limited data are available for its earliest members. Here we investigate the morphology of Devonian actinopterygians, focusing on the lower jaw. We use X‐ray computed tomography (XCT) to provide comprehensive descriptions of the mandibles of 19 species, which span the whole of the Devonian and represent roughly two‐thirds of all taxa known from more than isolated or fragmentary material. Our findings corroborate previous reports in part but reveal considerable new anatomical data and represent the first detailed description for roughly half of these taxa. The mandibles display substantial variation in size, spanning more than an order of magnitude. Although most conform to a generalized pattern of a large dentary and one or two smaller infradentaries, XCT data reveal significant differences in the structure of the jaw and arrangement of teeth that may be of functional relevance. We report the presence of a rudimentary coronoid process in several taxa, contributed to by the dentary and/or infradentaries, as well a raised articular region, resulting in a mandible with an offset bite and that functions as a bent level arm. Among the most striking variation is that of tooth morphology: several taxa have heterodont dentary teeth that vary in size and orientation, and multiple variations on enlarged, whorl‐like and posteriorly‐oriented anterior coronoid dentition are observed. We use these new data to revise morphological characters that may be of phylogenetic significance and consider the possible functional implicationds of these traits. The observed variation in mandible form and structure suggests previously unappreciated functional diversity among otherwise morphologically homogenous Devonian ray‐finned fishes. 
    more » « less