skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Non-volatile electrically programmable integrated photonics with 5-bit operation based on phase-change material Sb2S3
We report a hybrid phase-change mateial Sb2S3-silicon photonic tunable directional coupler, which exhibits low insertion loss (< 1.0 dB), large extinction ratio (> 10 dB), high endurance (> 1,600 switching events), and 32 operation levels.  more » « less
Award ID(s):
2003509
PAR ID:
10475217
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Optica Publishing Group
Date Published:
ISBN:
978-1-957171-25-8
Page Range / eLocation ID:
STu3J.1
Format(s):
Medium: X
Location:
San Jose, CA
Sponsoring Org:
National Science Foundation
More Like this
  1. We demonstrate InGaAs/InP balanced photodiodes onSi3N4waveguides with record-high 3-dB bandwidth of 30 GHz, 0.72 A/W responsivity, and high common mode rejection ratio (CMRR) of 26 dB at 30 GHz. 
    more » « less
  2. Quasi-vertical profiles (QVPs) obtained from a database of U.S. WSR-88D data are used to document polarimetric characteristics of the melting layer (ML) in cold-season storms with high vertical resolution and accuracy. A polarimetric technique to define the top and bottom of the ML is first introduced. Using the QVPs, statistical relationships are developed to gain insight into the evolution of microphysical processes above, within, and below the ML, leading to a statistical polarimetric model of the ML that reveals characteristics that reflectivity data alone are not able to provide, particularly in regions of weak reflectivity factor at horizontal polarization ZH. QVP ML statistics are examined for two regimes in the ML data: ZH≥ 20 dB Z and ZH< 20 dB Z. Regions of ZH≥ 20 dB Z indicate locations of MLs collocated with enhanced differential reflectivity ZDRand reduced copolar correlation coefficient ρhv, while for ZH< 20 dB Z a well-defined ML is difficult to discern using ZHalone. Evidence of large ZDRup to 4 dB, backscatter differential phase δ up to 8°, and low ρhvdown to 0.80 associated with lower ZH(from −10 to 20 dB Z) in the ML is observed when pristine, nonaggregated ice falls through it. Positive correlation is documented between maximum specific differential phase KDPand maximum ZHin the ML; these are the first QVP observations of KDPin MLs documented at S band. Negative correlation occurs between minimum ρhvin the ML and ML depth and between minimum ρhvin the ML and the corresponding enhancement of ZH(Δ ZH= ZHmax− ZHrain). 
    more » « less
  3. With the ever-increasing need for higher data rates, datacom and telecom industries are now migrating to silicon photonics to achieve higher data rates with reduced manufacturing costs. However, the optical packaging of integrated photonic devices with multiple I/O ports remains a slow and expensive process. We introduce an optical packaging technique to attach fiber arrays to a photonic chip in a single shot using CO2laser fusion splicing. We show a minimum coupling loss of 1.1 dB, 1.5 dB, and 1.4 dB per-facet for 2, 4, and 8-fiber arrays (respectively) fused to the oxide mode converters using a single shot from the CO2laser. 
    more » « less
  4. Abstract Dielectric breakdown (DB) controls the failure, and increasingly the function, of microelectronic devices. Standard imaging techniques, which generate contrast based on physical structure, struggle to visualize this electronic process. Here in situ scanning transmission electron microscopy (STEM) electron beam‐induced current (EBIC) imaging of DB in Pt/HfO2/Ti valence change memory devices is reported. STEM EBIC imaging directly visualizes the electronic signatures of DB, namely local changes in the conductivity and in the electric field, with high spatial resolution and good contrast. DB is observed to proceed through two distinct structures arranged in series: a volatile, “soft” filament created by electron injection; and a non‐volatile, “hard” filament created by oxygen‐vacancy aggregation. This picture makes a physical distinction between “soft” and “hard” DB, while at the same time accommodating “progressive” DB, where the relative lengths of the hard and soft filaments can change on a continuum. 
    more » « less
  5. Abstract The layered perovskite Ca3Mn2O7(CMO) is a hybrid improper ferroelectric candidate proposed for room temperature multiferroicity, which also displays negative thermal expansion behavior due to a competition between coexisting polar and nonpolar phases. However, little is known about the atomic-scale structure of the polar/nonpolar phase coexistence or the underlying physics of its formation and transition. In this work, we report the direct observation of double bilayer polar nanoregions (db-PNRs) in Ca2.9Sr0.1Mn2O7using aberration-corrected scanning transmission electron microscopy (S/TEM). In-situ TEM heating experiments show that the db-PNRs can exist up to 650 °C. Electron energy loss spectroscopy (EELS) studies coupled with first-principles calculations demonstrate that the stabilization mechanism of the db-PNRs is directly related to an Mn oxidation state change (from 4+ to 2+), which is linked to the presence of Mn antisite defects. These findings open the door to manipulating phase coexistence and achieving exotic properties in hybrid improper ferroelectric. 
    more » « less