skip to main content


Title: Closing the loop between microstructure and charge transport in conjugated polymers by combining microscopy and simulation

A grand challenge in materials science is to identify the impact of molecular composition and structure across a range of length scales on macroscopic properties. We demonstrate a unified experimental–theoretical framework that coordinates experimental measurements of mesoscale structure with molecular-level physical modeling to bridge multiple scales of physical behavior. Here we apply this framework to understand charge transport in a semiconducting polymer. Spatially-resolved nanodiffraction in a transmission electron microscope is combined with a self-consistent framework of the polymer chain statistics to yield a detailed picture of the polymer microstructure ranging from the molecular to device relevant scale. Using these data as inputs for charge transport calculations, the combined multiscale approach highlights the underrepresented role of defects in existing transport models. Short-range transport is shown to be more chaotic than is often pictured, with the drift velocity accounting for a small portion of overall charge motion. Local transport is sensitive to the alignment and geometry of polymer chains. At longer length scales, large domains and gradual grain boundaries funnel charges preferentially to certain regions, creating inhomogeneous charge distributions. While alignment generally improves mobility, these funneling effects negatively impact mobility. The microstructure is modified in silico to explore possible design rules, showing chain stiffness and alignment to be beneficial while local homogeneity has no positive effect. This combined approach creates a flexible and extensible pipeline for analyzing multiscale functional properties and a general strategy for extending the accesible length scales of experimental and theoretical probes by harnessing their combined strengths.

 
more » « less
Award ID(s):
1855334
NSF-PAR ID:
10475284
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences of the United States of America
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
119
Issue:
46
ISSN:
0027-8424
Page Range / eLocation ID:
e2204346119
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Charge transport in semiconducting polymers is inextricably linked to their microstructure, making the characterization of polymer morphology at all length‐scales essential for understanding the factors that limit mobility in these materials. Indeed, charge transport depends both on the ability of polarons to delocalize at the approximately nanometer length‐scale and navigate a complex energetic and morphological mesoscale landscape. While characterization of the mesoscale morphology of polymers is well‐established, studies of the local chain packing and nanoscale disorder, which affect delocalization, can be significantly more difficult to carry out. Through infrared charge modulation spectroscopy and theoretical modeling, the effect of the local chain environment on polaron delocalization is directly measured and quantified. Using a series of polymers based on the model system, poly(3‐hexylthiophene), the link between disorder and polaron localization is systematically explored. Polaron delocalization is correlated with known trends in mobility, revealing that while charge delocalization is always beneficial, the formation of tie‐chains is necessary to reach the highest mobilities in semicrystalline polymers. The results provide direct evidence for the importance of both nanoscale (charge carrier delocalization) and mesoscale (tie‐chains) orders, demonstrating the need to distinguish the key length‐scale limiting charge transport in the design of new, high mobility polymers.

     
    more » « less
  2. Abstract

    Donor–acceptor (D–A) type semiconducting polymers have shown great potential for the application of deformable and stretchable electronics in recent decades. However, due to their heterogeneous structure with rigid backbones and long solubilizing side chains, the fundamental understanding of their molecular picture upon mechanical deformation still lacks investigation. Here, the molecular orientation of diketopyrrolopyrrole (DPP)‐based D–A polymer thin films is probed under tensile deformation via both experimental measurements and molecular modeling. The detailed morphological analysis demonstrates highly aligned polymer crystallites upon deformation, while the degree of backbone alignment is limited within the crystalline domain. Besides, the aromatic ring on polymer backbones rotates parallel to the strain direction despite the relatively low overall chain anisotropy. The effect of side‐chain length on the DPP chain alignment is observed to be less noticeable. These observations are distinct from traditional linear‐chain semicrystalline polymers like polyethylene due to distinct characteristics of backbone/side‐chain combination and the crystallographic characteristics in DPP polymers. Furthermore, a stable and isotropic charge carrier mobility is obtained from fabricated organic field‐effect transistors. This study deconvolutes the alignment of different components within the thin‐film microstructure and highlights that crystallite rotation and chain slippage are the primary deformation mechanisms for semiconducting polymers.

     
    more » « less
  3. Living systems are composed of a select number of biopolymers and minerals yet exhibit an immense diversity in materials properties. The wide-ranging characteristics, such as enhanced mechanical properties of skin and bone, or responsive optical properties derived from structural coloration, are a result of the multiscale, hierarchical structure of the materials. The fields of materials and polymer chemistry have leveraged equilibrium concepts in an effort to mimic the structure complex materials seen in nature. However, realizing the remarkable properties in natural systems requires moving beyond an equilibrium perspective. An alternative method to create materials with multiscale structures is to approach the issue from a kinetic perspective and utilize chemical processes to drive phase transitions. This Account features an active area of research in our group, reaction-induced phase transitions (RIPT), which uses chemical reactions such as polymerizations to induce structural changes in soft material systems. Depending on the type of phase transition (e.g., microphase versus macrophase separation), the resulting change in state will occur at different length scales (e.g., nm – μm), thus dictating the structure of the material. For example, the in situ formation of either a block copolymer or a homopolymer initially in a monomer mixture during a polymerization will drive nanoscale or macroscale transitions, respectively. Specifically, three different examples utilizing reaction-driven phase changes will be discussed: 1) in situ polymer grafting from block copolymers, 2) multiscale polymer nanocomposites, and 3) Lewis adduct-driven phase transitions. All three areas highlight how chemical changes via polymerizations or specific chemical binding result in phase transitions that lead to nanostructural and multiscale changes. Harnessing kinetic chemical processes to promote and control material structure, as opposed to organizing pre-synthesized molecules, polymers, or nanoparticles within a thermodynamic framework, is a growing area of interest. Trapping nonequilibrium states in polymer materials has been primarily focused from a polymer chain conformation viewpoint in which synthesized polymers are subjected to different thermal and processing conditions. The impact of reaction kinetics and polymerization rate on final polymer material structure is starting to be recognized as a new way to access different morphologies not available through thermodynamic means. Furthermore, kinetic control of polymer material structure is not specific to polymerizations and encompasses any chemical reaction that induce morphology transitions. Kinetically driven processes to dictate material structure directly impact a broad range of areas including separation membranes, biomolecular condensates, cell mobility, and the self-assembly of polymers and colloids. Advancing polymer material syntheses using kinetic principles such as RIPT opens new possibilities for dictating material structure and properties beyond what is currently available with traditional self-assembly techniques. 
    more » « less
  4. null (Ed.)
    A theoretical model is developed which illustrates the dynamics of layering instability, frequently realized in ocean regions with active fingering convection. Thermohaline layering is driven by the interplay between large-scale stratification and primary double-diffusive instabilities operating at the microscale – temporal and spatial scales set by molecular dissipation. This interaction is described by a combination of direct numerical simulations and an asymptotic multiscale model. The multiscale theory is used to formulate explicit and dynamically consistent flux laws, which can be readily implemented in large-scale analytical and numerical models. Most previous theoretical investigations of thermohaline layering were based on the flux-gradient model, which assumes that the vertical transport of density components is uniquely determined by their local background gradients. The key deficiency of this approach is that layering instabilities predicted by the flux-gradient model have unbounded growth rates at high wavenumbers. The resulting ultraviolet catastrophe precludes the analysis of such basic properties of layering instability as its preferred wavelength or the maximal growth rate. The multiscale model, on the other hand, incorporates hyperdiffusion terms that stabilize short layering modes. Overall, the presented theory carries the triple advantage of (i) offering an explicit description of the interaction between microstructure and layering modes, (ii) taking into account the influence of non-uniform stratification on microstructure-driven mixing, and (iii) avoiding unphysical behaviour of the flux-gradient laws at small scales. While the multiscale approach to the parametrization of time-dependent small-scale processes is illustrated here on the example of fingering convection, we expect the proposed technique to be readily adaptable to a wide range of applications. 
    more » « less
  5. Abstract

    Charge transport in molecular solids, such as semiconducting polymers, is strongly affected by packing and structural order over several length scales. Conventional approaches to modeling these phenomena range from analytical models to numerical models using quantum mechanical calculations. While analytical approaches cannot account for detailed structural effects, numerical models are expensive for exhaustive (and statistically significant) analysis. Here, we report a computationally scalable methodology using graph theory to explore the influence of molecular ordering on charge mobility. This model accurately reproduces the analytical results for transport in nematic and isotropic systems, as well as experimental results of the dependence of the charge carrier mobility on orientation correlation length for polymers. We further model how defect distribution (correlated and uncorrelated) in semiconducting polymers can modify the mobility, predicting a critical defect density above which the mobility plummets. This work enables rapid (and computationally extensible) evaluation of charge mobility semiconducting polymer devices.

     
    more » « less