skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Describing proton transfer modes in shared proton systems with constrained nuclear–electronic orbital methods
Proton transfer is crucial in various chemical and biological processes. Because of significant nuclear quantum effects, accurate and efficient description of proton transfer remains a great challenge. In this Communication, we apply constrained nuclear–electronic orbital density functional theory (CNEO-DFT) and constrained nuclear–electronic orbital molecular dynamics (CNEO-MD) to three prototypical shared proton systems and investigate their proton transfer modes. We find that with a good description of nuclear quantum effects, CNEO-DFT and CNEO-MD can well describe the geometries and vibrational spectra of the shared proton systems. Such a good performance is in significant contrast to DFT and DFT-based ab initio molecular dynamics, which often fail for shared proton systems. As an efficient method based on classical simulations, CNEO-MD is promising for future investigations of larger and more complex proton transfer systems.  more » « less
Award ID(s):
2238473
PAR ID:
10475436
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
158
Issue:
23
ISSN:
0021-9606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Proton transfer plays a crucial role in various chemical and biological processes. A major theoretical challenge in simulating proton transfer arises from the quantum nature of the proton. The constrained nuclear-electronic orbital (CNEO) framework was recently developed to efficiently and accurately account for nuclear quantum effects, particularly quantum nuclear delocalization effects, in quantum chemistry calculations and molecular dynamics simulations. In this paper, we systematically investigate challenging proton transfer modes in a series of shared-proton systems using CNEO density functional theory (CNEO-DFT), focusing on evaluating existing electron–proton correlation functionals. Our results show that CNEO-DFT accurately describes proton transfer vibrational modes and significantly outperforms conventional DFT. The inclusion of the epc17-2 electron–proton correlation functional in CNEO-DFT produces similar performance to that without electron–proton correlations, while the epc17-1 functional yields less accurate results, comparable with conventional DFT. These findings hold true for both asymmetrical and symmetrical shared-proton systems. Therefore, until a more accurate electron–proton correlation functional is developed, we currently recommend performing vibrational spectrum calculations using CNEO-DFT without electron–proton correlation functionals. 
    more » « less
  2. The hybrid quantum mechanics/molecular mechanics (QM/MM) approach, which combines the accuracy of QM methods with the efficiency of MM methods, is widely used in the study of complex systems. However, past QM/MM implementations often neglect or face challenges in addressing nuclear quantum effects, despite their crucial role in many key chemical and biological processes. Recently, our group developed the constrained nuclear-electronic orbital (CNEO) theory, a cost-efficient approach that accurately addresses nuclear quantum effects, especially quantum nuclear delocalization effects. In this work, we integrate CNEO with the QM/MM approach through the electrostatic embedding scheme and apply the resulting CNEO QM/MM to two hydrogen-bonded complexes. We find that both solvation effects and nuclear quantum effects significantly impact hydrogen bond structures and dynamics. Notably, in the glutamic acid–glutamate complex, which mimics a common low barrier hydrogen bond in biological systems, CNEO QM/MM accurately predicts nearly equal proton sharing between the two residues. With an accurate description of both quantum nuclear delocalization effects and environmental effects, CNEO QM/MM is a promising new approach for simulating complex chemical and biological systems. 
    more » « less
  3. The accurate description of nuclear quantum effects, such as zero-point energy, is important for modeling a wide range of chemical and biological processes. Within the nuclear–electronic orbital (NEO) approach, such effects are incorporated in a computationally efficient way by treating electrons and select nuclei, typically protons, quantum mechanically with molecular orbital techniques. Herein, we implement and test a NEO coupled cluster method that explicitly includes the triple electron–electron–proton excitations, where two electrons and one proton are excited simultaneously, using automatic differentiation. Our calculations show that this NEO-CCSDT eep method provides highly accurate proton densities and proton affinities, outperforming any previously studied NEO method. These examples highlight the importance of the triple electron–electron–proton excitations for an accurate description of nuclear quantum effects. Additionally, we also implement and test the second-order approximate coupled cluster with singles and doubles (NEO-CC2) method as well as its scaled-opposite-spin (SOS) versions. The NEO-SOS′-CC2 method, which scales the electron–proton correlation energy as well as the opposite-spin and same-spin components of the electron–electron correlation energy, achieves nearly the same accuracy as the NEO-CCSDT eep method for the properties studied. Because of its low computational cost, this method will enable a wide range of chemical and photochemical applications for large molecular systems. This work sets the stage for a variety of developments and applications within the NEO framework. 
    more » « less
  4. Proton transfer and hydrogen tunneling play key roles in many processes of chemical and biological importance. The generalized nuclear-electronic orbital multistate density functional theory (NEO-MSDFT) method was developed in order to capture hydrogen tunneling effects in systems involving the transfer and tunneling of one or more protons. The generalized NEO-MSDFT method treats the transferring protons quantum mechanically on the same level as the electrons and obtains the delocalized vibronic states associated with hydrogen tunneling by mixing localized NEO-DFT states in a nonorthogonal configuration interaction scheme. Herein, we present the derivation and implementation of analytical gradients for the generalized NEO-MSDFT vibronic state energies and the nonadiabatic coupling vectors between these vibronic states. We use this methodology to perform adiabatic and nonadiabatic dynamics simulations of the double proton transfer reactions in the formic acid dimer and the heterodimer of formamidine and formic acid. The generalized NEO-MSDFT method is shown to capture the strongly coupled synchronous or asynchronous tunneling of the two protons in these processes. Inclusion of vibronically nonadiabatic effects is found to significantly impact the double proton transfer dynamics. This work lays the foundation for a variety of nonadiabatic dynamics simulations of multiple proton transfer systems, such as proton relays and hydrogen-bonding networks. 
    more » « less
  5. Hydrogen tunneling plays a critical role in many biologically and chemically important processes. The nuclear–electronic orbital multistate density functional theory (NEO-MSDFT) method was developed to describe hydrogen transfer systems. In this approach, the transferring proton is treated quantum mechanically on the same level as the electrons within multicomponent DFT, and a nonorthogonal configuration interaction scheme is used to produce delocalized vibronic states from localized vibronic states. The NEO-MSDFT method has been shown to provide accurate hydrogen tunneling splittings for fixed molecular systems. Herein, the NEO-MSDFT analytical gradients for both ground and excited vibronic states are derived and implemented. The analytical gradients and semi-numerical Hessians are used to optimize and characterize equilibrium and transition state geometries and to generate minimum energy paths (MEPs), for proton transfer in the deprotonated acetylene dimer and malonaldehyde. The barriers along the resulting MEPs are lower when the transferring proton is quantized because the NEO-MSDFT method inherently includes the zero-point energy of the transferring proton. Analysis of the proton densities along the MEPs illustrates that the proton density can exhibit symmetric or asymmetric bilobal character associated with symmetric or slightly asymmetric double-well potential energy surfaces and hydrogen tunneling. Analysis of the contributions to the intrinsic reaction coordinate reveals that changes in the C–O bond lengths drive proton transfer in malonaldehyde. This work provides the foundation for future reaction path studies and direct nonadiabatic dynamics simulations of a wide range of hydrogen transfer reactions. 
    more » « less