skip to main content


This content will become publicly available on June 21, 2024

Title: Describing proton transfer modes in shared proton systems with constrained nuclear–electronic orbital methods

Proton transfer is crucial in various chemical and biological processes. Because of significant nuclear quantum effects, accurate and efficient description of proton transfer remains a great challenge. In this Communication, we apply constrained nuclear–electronic orbital density functional theory (CNEO-DFT) and constrained nuclear–electronic orbital molecular dynamics (CNEO-MD) to three prototypical shared proton systems and investigate their proton transfer modes. We find that with a good description of nuclear quantum effects, CNEO-DFT and CNEO-MD can well describe the geometries and vibrational spectra of the shared proton systems. Such a good performance is in significant contrast to DFT and DFT-based ab initio molecular dynamics, which often fail for shared proton systems. As an efficient method based on classical simulations, CNEO-MD is promising for future investigations of larger and more complex proton transfer systems.

 
more » « less
Award ID(s):
2238473
NSF-PAR ID:
10475436
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
158
Issue:
23
ISSN:
0021-9606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The accurate description of nuclear quantum effects, such as zero-point energy, is important for modeling a wide range of chemical and biological processes. Within the nuclear–electronic orbital (NEO) approach, such effects are incorporated in a computationally efficient way by treating electrons and select nuclei, typically protons, quantum mechanically with molecular orbital techniques. Herein, we implement and test a NEO coupled cluster method that explicitly includes the triple electron–electron–proton excitations, where two electrons and one proton are excited simultaneously, using automatic differentiation. Our calculations show that this NEO-CCSDT eep method provides highly accurate proton densities and proton affinities, outperforming any previously studied NEO method. These examples highlight the importance of the triple electron–electron–proton excitations for an accurate description of nuclear quantum effects. Additionally, we also implement and test the second-order approximate coupled cluster with singles and doubles (NEO-CC2) method as well as its scaled-opposite-spin (SOS) versions. The NEO-SOS′-CC2 method, which scales the electron–proton correlation energy as well as the opposite-spin and same-spin components of the electron–electron correlation energy, achieves nearly the same accuracy as the NEO-CCSDT eep method for the properties studied. Because of its low computational cost, this method will enable a wide range of chemical and photochemical applications for large molecular systems. This work sets the stage for a variety of developments and applications within the NEO framework. 
    more » « less
  2. Hydrogen tunneling plays a critical role in many biologically and chemically important processes. The nuclear–electronic orbital multistate density functional theory (NEO-MSDFT) method was developed to describe hydrogen transfer systems. In this approach, the transferring proton is treated quantum mechanically on the same level as the electrons within multicomponent DFT, and a nonorthogonal configuration interaction scheme is used to produce delocalized vibronic states from localized vibronic states. The NEO-MSDFT method has been shown to provide accurate hydrogen tunneling splittings for fixed molecular systems. Herein, the NEO-MSDFT analytical gradients for both ground and excited vibronic states are derived and implemented. The analytical gradients and semi-numerical Hessians are used to optimize and characterize equilibrium and transition state geometries and to generate minimum energy paths (MEPs), for proton transfer in the deprotonated acetylene dimer and malonaldehyde. The barriers along the resulting MEPs are lower when the transferring proton is quantized because the NEO-MSDFT method inherently includes the zero-point energy of the transferring proton. Analysis of the proton densities along the MEPs illustrates that the proton density can exhibit symmetric or asymmetric bilobal character associated with symmetric or slightly asymmetric double-well potential energy surfaces and hydrogen tunneling. Analysis of the contributions to the intrinsic reaction coordinate reveals that changes in the C–O bond lengths drive proton transfer in malonaldehyde. This work provides the foundation for future reaction path studies and direct nonadiabatic dynamics simulations of a wide range of hydrogen transfer reactions.

     
    more » « less
  3. Abstract

    Efficiently hyperpolarizing proton‐dense molecular solids through dynamic nuclear polarization (DNP) solid‐state NMR is still an unmet challenge. Polarizing agents (PAs) developed so far do not perform well on proton‐rich systems, such as organic microcrystals and biomolecular assemblies. Herein we introduce a new PA, cAsymPol‐POK, and report outstanding hyperpolarization efficiency on 12.76 kDa U‐13C,15N‐labeled LecA protein and pharmaceutical drugs at high magnetic fields (up to 18.8 T) and fast magic angle spinning (MAS) frequencies (up to 40 kHz). The performance of cAsymPol‐POK is rationalized by MAS‐DNP simulations combined with electron paramagnetic resonance (EPR), density functional theory (DFT) and molecular dynamics (MD). This work shows that this new biradical is compatible with challenging biomolecular applications and unlocks the rapid acquisition of13C–13C and15N–13C correlations of pharmaceutical drugs at natural isotopic abundance, which are key experiments for structure determination.

     
    more » « less
  4. Abstract

    Efficiently hyperpolarizing proton‐dense molecular solids through dynamic nuclear polarization (DNP) solid‐state NMR is still an unmet challenge. Polarizing agents (PAs) developed so far do not perform well on proton‐rich systems, such as organic microcrystals and biomolecular assemblies. Herein we introduce a new PA, cAsymPol‐POK, and report outstanding hyperpolarization efficiency on 12.76 kDa U‐13C,15N‐labeled LecA protein and pharmaceutical drugs at high magnetic fields (up to 18.8 T) and fast magic angle spinning (MAS) frequencies (up to 40 kHz). The performance of cAsymPol‐POK is rationalized by MAS‐DNP simulations combined with electron paramagnetic resonance (EPR), density functional theory (DFT) and molecular dynamics (MD). This work shows that this new biradical is compatible with challenging biomolecular applications and unlocks the rapid acquisition of13C–13C and15N–13C correlations of pharmaceutical drugs at natural isotopic abundance, which are key experiments for structure determination.

     
    more » « less
  5. Abstract

    We present a graph‐theoretic approach to adaptively compute many‐body approximations in an efficient manner to perform (a) accurate post‐Hartree–Fock (HF) ab initio molecular dynamics (AIMD) at density functional theory (DFT) cost for medium‐ to large‐sized molecular clusters, (b) hybrid DFT electronic structure calculations for condensed‐phase simulations at the cost of pure density functionals, (c) reduced‐cost on‐the‐fly basis extrapolation for gas‐phase AIMD and condensed phase studies, and (d) accurate post‐HF‐level potential energy surfaces at DFT cost for quantum nuclear effects. The salient features of our approach are ONIOM‐like in that (a) the full system (cluster or condensed phase) calculation is performed at a lower level of theory (pure DFT for condensed phase or hybrid DFT for molecular systems), and (b) this approximation is improved through a correction term that captures all many‐body interactions up to any given order within a higher level of theory (hybrid DFT for condensed phase; CCSD or MP2 for cluster), combined through graph‐theoretic methods. Specifically, a region of chemical interest is coarse‐grained into a set of nodes and these nodes are then connected to form edges based on a given definition of local envelope (or threshold) of interactions. The nodes and edges together define a graph, which forms the basis for developing the many‐body expansion. The methods are demonstrated through (a) ab initio dynamics studies on protonated water clusters and polypeptide fragments, (b) potential energy surface calculations on one‐dimensional water chains such as those found in ion channels, and (c) conformational stabilization and lattice energy studies on homogeneous and heterogeneous surfaces of water with organic adsorbates using two‐dimensional periodic boundary conditions.

     
    more » « less